
JOSE Working Group

7 November 2013, 0900-1130 PST

IETF 88 Vancouver

Note Well
Any submission to the IETF intended by the Contributor for publication as all or part of an
IETF Internet-Draft or RFC and any statement made within the context of an IETF activity is
considered an "IETF Contribution". Such statements include oral statements in IETF
sessions, as well as written and electronic communications made at any time or place,
which are addressed to:

–  The IETF plenary session
–  The IESG, or any member thereof on behalf of the IESG
–  Any IETF mailing list, including the IETF list itself, any working group or design team list, or any

other list functioning under IETF auspices
–  Any IETF working group or portion thereof
–  Any Birds of a Feather (BOF) session
–  The IAB or any member thereof on behalf of the IAB
–  The RFC Editor or the Internet-Drafts function

All IETF Contributions are subject to the rules of RFC 5378 and RFC 3979 (updated by RFC
4879).

Statements made outside of an IETF session, mailing list or other function, that are clearly
not intended to be input to an IETF activity, group or function, are not IETF Contributions in
the context of this notice. Please consult RFC 5378 and RFC 3979 for details.

A participant in any IETF activity is deemed to accept all IETF rules of process, as
documented in Best Current Practices RFCs and IESG Statements.

A participant in any IETF activity acknowledges that written, audio and video records of
meetings may be made and may be available to the public.

Agenda
•  Administrivia and Agenda Bashing

•  Open issue resolution
Issues to be discussed include:

•  #54, #55, #141
•  #74-C
•  #77
•  #93
•  #114-C

•  Schedule and next steps (Chairs)
•  Cookbook document
•  Virtual interim schedule

Summary Issue Status

•  draft-ietf-jose-use-cases
•  IESG processing

•  JWS, JWE, JWK, JWA Issue Resolution
•  Total Issues = 185 (many with multiple parts)
•  Remaining Open Issues = 56 (Closed Issues = 129)
•  Co-chairs and editor have had several meetings this week

and previously resulting in agreements for 49 issues:
•  Awaiting editor implementation,
•  Awaiting implementation verification, or
•  Awaiting external input or verification.

•  Issues for discussion today – 7 !

#54, #55, #141

•  #54 (JWA) epk/apu/apv need to be REQUIRED
•  #55 (JWA) Mandatory entropy in ECC KDF

inputs
•  #141 (JWS) Section 4.1.10 "crit" (Critical)

Header Parameter

•  concat issue
•  http://www.ietf.org/mail-archive/web/jose/current/

msg03542.html

#74-C (JWK)

•  #74-C (JWK) Section 3.5 - "x5u" (X.509 URL)
Header Parameter
•  What happens if this JWK has only an x5u member

in it? Is this a legal construct? How does one say
that this matches the bare public key?

•  Question: Is there a minimum set of fields which
must be present in the JWK?

#77

•  #77 – (JWK) Section 3.7 "x5c" (X.509 Certificate
Chain) Parameter

•  We currently require things to be presented as
chains, but generally things are presented as
bags

•  Should we change from chains to bags?
•  If we stay with chains, what happens to partial

chains (are they legal)?

#93
•  #93 (JWS)

•  There should be a new - informational - appendix added to this document
that describes how to go from the various fields or lack of fields to get a
key. This should include all of the methods of finding keys that Mike has
described to me over the duration of this project. This would be everything
from following a jku to the application provides a method to find the key.
The description should contain a series of steps and a description of what
information is retrieved by doing this.

•  Jim Schaad and Richard Barnes provided proposals (see
following slides):
•  Non-normative appendix to JWS

Jim Schaad proposal: http://www.ietf.org/mail-archive/web/jose/current/msg03447.html

A. Look for certificates:
a. Identify an EE certificate and a certificate list

 i. Is there an x5u? Follow the link and down load the certificates to get a certificate list and set the
EE certificate to the zero-th entry in the list

 ii. Is there an x5t? Locate the EE certificate in local storage and set the certificate list to that
certificate

 iii. Is there an x5c? Set the EE certificate to the first item in the list. Set the certificate list to the
array of certificates.

b. Do path building from the EE certificate to a trusted root using the certificate list and local
certificate stores.

c. Validate the path to a trust point
B. Look for JWK Sets

a. Create an empty JWK set KEYS
b. Is there a jku? Down load from the pointer and add to KEYS we are maintaining.
c. Is there a jkw? Add it to KEYS
d. Are there application JWKs? Add them to KEYS
e. Are there local JWKs? Add them to KEYS

C. Find viable keys in KEYS
a. Is there a kid? Remove items from KEYS which have a kid and it does match, leave items with

kid value in the KEYS
b. Remove items from KEYS based on the algorithm in the alg member. If a key element in KEYS

does not support the algorithm, remove it. This examines the ‘kty’ member and the ‘alg’ member
if it is present.

c. Remove items from KEYS based on the use member. If a key element in KEYS has a use
member and it does not match the required use for the JOSE element, remove it from KEYS.

D. Check each of the key values in KEYS to see if it validates/decrypts the object.

Richard Barnes proposal: http://www.ietf.org/mail-archive/web/jose/current/msg03527.html

Look for self-describing keys (jwk, jku, x5c, x5u), then look for key references (kid,
x5t)

0. Initialize KEYS to the empty set

1.  If a key has been speciified by the application for use with this object, add that
key to KEYS

2. If "jwk" in header, add value to KEYS

3. If "jku" in header, fetch URL and add all JWKs in set to KEYS

4. If "x5c" in header, extract public key and add to KEYS (or corresponding private
key, if present)

5. If "x5u" in header, fetch URL and process first certificate as "x5c”

6. If "kid" in header and "kid" value represents a known key, add corresponding key
to KEYS

7. If "x5t" in header and "x5t" value matches a known cert, add corresponding key to
KEYS

#114-C

•  #144-C (JWS) Section 4.1.10 "crit" (Critical)
Header Parameter

•  Question: If an extension is placed in a “crit”
header, must that extension also be signed?

Next Steps

•  Cookbook document

•  Expected editor’s drafts:
•  In the next week or so, all normative changes incorporated
•  In the next month or so, all remaining editorial changes

•  Proposed tentative virtual interim
•  13 January 2014

