Virtual Subnet : A L3VPN-based Subnet Extension Solution
draft-xu-l3vpn-virtual-subnet-01

Xiaohu Xu (Huawei)
Susan Hares (Adara Networks)
Yongbing Fan (China Telecom)
Christian Jacquenet (Orange)
Truman Boyes (Bloomberg LP)
Brendan Fee (Extreme Networks)

IETF88, Vancouver
Virtual Subnet at a Glance: Control Plane

MPLS/IP Backbone

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Next-hop</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.1.1/32</td>
<td>127.0.0.1</td>
<td>Direct</td>
</tr>
<tr>
<td>1.1.1.2/32</td>
<td>1.1.1.2</td>
<td>Direct</td>
</tr>
<tr>
<td>1.1.1.3/32</td>
<td>PE-2</td>
<td>BGP</td>
</tr>
<tr>
<td>1.1.1.0/24</td>
<td>1.1.1.1</td>
<td>Direct</td>
</tr>
</tbody>
</table>

VPN Subnet: 1.1.1.0/24

- **DC #1**
 - Host A: 1.1.1.2/24

- **DC #2**
 - Host B: 1.1.1.3/24

- **Host route discovery based on ARP/ND/VDP etc.**

- **Host route distribution via L3VPN signaling**

- **Host route creation for local hosts.**

- **Host discovery based on ARP/ND/VDP etc.**

- **Host route creation for local hosts.**

- **Local CE hosts are discovered based on ARP/ND, VDP or even the interaction with the data center orchestration system.**

- **Host routes for local CE hosts are created automatically on PE routers and then propagated to remote PE routers via L3VPN signaling.**
PE routers acting as ARP proxies respond with their own MAC addresses to the ARP requests messages for remote CE hosts from local CE hosts.

Intra-subnet traffic across data centers is forwarded according to the L3VPN forwarding process.
The new PE router (i.e., PE-2) advertises a host route for the arriving VM upon receiving a notification of VM attachment (e.g., a gratuitous ARP).

The old PE router (i.e., PE-1) withdraws the host route for the moved VM after noticing the leave of that VM. Meanwhile, it would broadcast a gratuitous ARP on behalf of that CE host with source MAC address being one of its own.
Confine MAC Learning, Flooding and Failure Domains

- MAC learning domain is confined within data centers. Therefore, switches within data centers only need to learn MAC addresses of local CE hosts.
- Flooding and failure domains are confined within data centers. As such, multicast/broadcast protocol messages (e.g., ARP/DHCP/IGMP/STP/VRRP) from customer networks are terminated on PE routers. In addition, no flood of unknown unicast across data centers.
Host routes for CE hosts within data centers are propagated to remote PE routers to which cloud users are connected. Therefore, north-to-south traffic would be delivered to the right data center without traffic tromboning.

PE routers of each data center are default GWs. Therefore, south-to-north traffic would be forwarded to cloud users without traffic tromboning as well.
Considerations for Non-IP traffic

- Virtual Subnet is a Layer3 overlay in which IP traffic including both intra-subnet and inter-subnet would be forwarded at Layer3.

- To support non-IP traffic further, the unified L2/L3 overlay approach following the idea of “route all IP traffic, bridge non-IP traffic” could be considered (e.g., IP traffic is forwarded by using the Virtual Subnet while non-IP traffic is forwarded across Layer2 overlays (e.g., VPLS)).
Next Steps

- Implementations are already available.
- We co-authors believe this draft is ready for WG adoption.