Protecting Encapsulation with Encryption

LISP Working Group
Vancouver IETF
November 2013

Dino Farinacci
Roger Jorgensen
Ed Lopez
Problem Statement

- Wouldn't it be good to protect the LISP data-plane?
- Wouldn't it be simpler to not require a PKI infrastructure?
- Wouldn't it be good to do key exchange with one request/reply transaction?
Obvious Solution

- Put keys in the LISP mapping database system
- Exchange keys with a LISP Map-Request/Map-Reply transaction
How?

- We have a Security Type LCAF that encodes key-type, cipher-type, and key material.

- The RLOC-record in Map-Reply contains a 2-tuple of:
 - RLOC address
 - Security key

- ITR caches 2-tuple and then encrypts-and-encaps

- ETR decaps-and-decrypts
What has to change

• Nothing in the core network
• Nothing at the LISP site
• Nothing in the mapping system
• xTR data-plane requires changes
• xTR control-plane needs to build and parse Security Type LCAF
Key Management - \textit{asymdb}

- Use asymmetric keys
 - ETR register its public key to mapping system
 - ITR uses public key to encrypt
 - ETR uses private key to decrypt
- \textbf{Pro}: keys can be exchanged in clear (with a 2-packet exchange)
- \textbf{Con}: asymmetric ciphers more compute intensive
Key Management - *symdb*

- Use symmetric keys - but must be transmitted securely
- Could use 2 step approach
 - Use public/private key in mapping database to secure the symmetric key
 - Then create shared secret symmetric key to use in data-plane
- ITR uses symmetric key for encryption, ETR uses same symmetric key for decryption
- **Pro**: faster ciphers
- **Con**: more keys to manage and more than a 2-packet exchange required
Key Management - *symmr*

- Use symmetric keys - alternative 2 step approach
 - Do not put keys in mapping database
 - Symmetric key returned in Map-Reply securely
 - Map-Reply is encrypted with map-server OTK
 - Map-Server OTK derived from ITR's OTK via LISP-SEC design
 - ITR can decrypt Map-Reply and cache shared secret symmetric key
- ITR uses symmetric key for encryption, ETR uses same symmetric key for decryption
- **Pro**: faster ciphers and one transaction to exchange shared secret
- **Con**: more keys
Key Management

• I'm sure there are other approaches with more combinations of key usage

• Let's try not to over-engineer this
Working Group Work Item?

• Security is in WG charter
• There has been so much attention this year on data privacy - go ask Angela Merkel :-)
• Internet Draft is coming