Mounting YANG-Defined
Information from Remote
Datastores
draft-clemm-netmod-mount-01.txt

Alexander Clemm, alex@-cisco.com

Jan Medved, imedved@cisco.com

Eric Voit, evoit@cisco.com

Purpose

Allow YANG Datastores to reference information in
remote datastores

YANG Server (Netconf, RESTconf) allows applications
to access data that is conceptually federated

Applications/ use cases:

— Incorporate information from remote systems into
consolidated network view

— Validation of parameter settings with cross-device
dependencies
* E.g global network policies, parameters, intent
* Coordination/orchestration left to users/applications today

Ask: Adopt as WG item

Datastore mount concept

Allow data store to refer to remote
data nodes / subtrees

Remote data nodes conceptually
treated as part of local data store

Avoid need for redundant data
modeling

Avoid need for replication and
orchestration

Greater consistency

Federated datastore - treat network
as one

Datastore mount concept (contd.)

Mount client:
— Contains mount points at which to attach remote subtrees into data tree

— Requests whose scope contains remote data are proxied/forwarded to
remote system

— Acts as application/client to the remote system

Mount server
— Authorative owner of the data
— May not be aware that mounting occurs
(mount client is “just another application”)
Notes
— Caching optimizations possible, implementation dependent
— Circular mounting prohibited
— Primary usage: accessing/ reading of data

* Configuration is also possible; locking depends on ability to obtain mount server locks

— Notifications and RPCs currently outside scope

Application example:
Network controller

* Provide consolidated network view to applications
north of controller without replicating information
from controlled nodes

— Mount information from devices and interfaces below
nodes inventory

— Allow to change containment hierarchy
* E.g. place top level “system” information underneath list of nodes

* Device and network abstractions complement one another in
same data tree

— No need for replicated of device models

— Dynamic discovery and support of new device features
e Controller not a bottle neck for the adoption of new feature

Network controller provided network view

External

systems * One datastore mounts many others

e.g. Netconf, RESTconf « Network controller presents network

abstractions, mounts network element
abstractions
Network e Avoid redundant inventory, maintain accurate
controllef i network synchronization

e Single point of contact for external systems
- \

Datastore ’ ’
| scope O O

Network element Network element

Open Daylight - Model-Driven SAL

Applications

NB REST API NB REST API NB REST API

Transformer/ Platform Network
Service Plugin Service Plugin

Adapter

JAVA SAL APIs (Generated)

Network

¢ Tunnels

-
23
-

/ Links Nodes EndPoints /"
Table

¢

’
Config

) % #
s Config Stats ‘¢
' X
!\
1 Y

]
1

\
\

\ Table

L,
]
i
1
1
\

ow Flow »

\ cee cos
\\ Paths \ Flow Flow Flow / A ow
JAVA SAL APIs (Generated) — rt
P N) 1 =& ’

Network Elements

www.opendaylight.org

OPENDAYLIGHT

rw mount-

Mountpoint YANG module

YANG extensions:

Mountpoint
Target: Reference data node that identifies remote server

Subtree: Define root of remote subtree to be attached

server-mgmt

+-- rw mountpoints

| +-- rw mountpoint [mountpoint-id]

| +-- rw mountpoint-id string

| +-- rw mount-target

| | +--: (IP)

| | | +-- rw target-ip vyang:ip-address
| | +--: (URI)

| | | +-- rw uri vyang:uri

| | +--: (host-name)

| | | +-- rw hostname vyang:host

| | +-— (node-1ID)

| | | +-- rw node-info-ref mnt:subtree-ref
| | +-— (other)

| | +-- rw opaque-target-id string
| +-—- rw subtree-ref mnt:subtree-ref

| +-- ro mountpoint-origin enumeration

| +-—- ro mount-status mnt:mount-status

| +--— rw manual-mount? empty

| +-- rw retry-timer? uintlé

| +-- rw number-of-retries? uint8

+-- rw global-mount-policies

+--— rw manual-mount? empty

+-- rw retry-time? uintle

+-- rw number-of-retries? uint8

RPCs for

manual mount, unmount

~— Mountpoint
management

Usage example

rw controller—-network

+-— rw network-elements
+-— rw network-element [element-id]
+—— rw element-id
+-— rw element-address
I

+-— M interfaces

Module
structure

element-id

list network-element ({
key "element-id";
leaf element-id {
type element-1ID;
}

container element-address {

}

mnt :mountpoint "interfaces" {
mnt:target "./element-address";
mnt:subtree "/if:interfaces";

Instance information

Mountpoint declaration

<network-element>

<element-id>NEl</element-id>

<element-address> </element-address>

<interfaces>

<if:interface>

<if:name>fastethernet-1/0</if:name>
<if:type>ethernetCsmacd</if:type>
<if:location>1/0</if:location>

</if:interface>

Questions?

