
<Insert Picture Here>

Prototyping NFSv4 Migration
Chuck Lever
Consulting Member of Technical Staff

IETF 88, Vancouver, BC -- NFSv4 Working Group

Sounding Our Recommendations

2

• Before advancing rfc3530-migration-update:

• What part of this I-D has been prototyped and tested?

• What has not been prototyped, and why not?

• What interesting non-protocol issues have arisen in our
prototypes?
• After fixing the protocol, is I-D complete?

• Note that NFSv4.1 migration is largely untested, and
is not in the scope of rfc3530-migration-update

• Implementation of specific recommendations

• SETCLIENTID with Uniform Client Strings

• Some aspects of server trunking detection

• Location discovery accompanied by RENEW

• FSID presence checking accompanied by RENEW

• NFS4ERR_DELAY on FH-bearing operations

IETF 88, Vancouver, BC -- NFSv4 Working Group

rfc3530-migration-update
Prototype Coverage

3

• Testing

• TSM in common usage scenarios

• Non-TSM in a few common usage scenarios

• Migration of Kerberos-protected shares

• Handling NFSv4 delegation during migration

IETF 88, Vancouver, BC -- NFSv4 Working Group

rfc3530-migration-update
Prototype Coverage

4

IETF 88, Vancouver, BC -- NFSv4 Working Group

rfc3530-migration-update
Prototype Gaps

5

• Lease merging on destination server

• Full implementation of trunking detection as described

• Multiple FSID presence tests per compound

• Using zero-length READ as TEST_STATEID
substitute

• NFS4ERR_DELAY on RELEASE_LOCKOWNER

IETF 88, Vancouver, BC -- NFSv4 Working Group

Why TSM is a Big Deal

6

• Data-only migration
• After a migration, client performs state recovery to inform

destination server of application lock state
• Server SHOULD provide a grace period to prevent theft of

lock state while recovery occurs
• Time-limited grace may prevent full recovery or hold up

application operation
• Transparent State Migration

• Destination server merges migrated lease with client’s
existing lease, if there is one

• The client can resume operation against the destination
server without CLAIM_PREVIOUS OPENs or a grace period

• No window for lock state loss

IETF 88, Vancouver, BC -- NFSv4 Working Group

Client Implementation Challenges

7

• Trunking detection
• Visited in previous presentations

• Redirecting the RPC transport
• Or, how to provide NFSv4.1+ session semantics in NFSv4.0

• Referrals v. migration
• NFS4ERR_MOVED triggers both, but how does a client tell

them apart?

• Lock state representation

IETF 88, Vancouver, BC -- NFSv4 Working Group

<Insert Picture Here>

Handling
NFS4ERR_MOVED

8

IETF 88, Vancouver, BC -- NFSv4 Working Group

NFS4ERR_MOVED
Establishing contact

9

• With either migration or referral, destination server
may be unfamiliar to client

• Trunking detection may be needed

• A fresh lease may be established

• Security negotiation may be needed

IETF 88, Vancouver, BC -- NFSv4 Working Group

NFS4ERR_MOVED
File system data structures

10

• Referral, like mount, materializes a local superblock

• No other data or metadata yet exists

• Migration recovery must preserve existing superblock,
inodes, and open/lock state data

• Including delegated state

• Non-TSM relies on client to preserve open/lock state

IETF 88, Vancouver, BC -- NFSv4 Working Group

NFS4ERR_MOVED
Client’s filename space

11

• Referral alters client’s filename space (a.k.a. mount)

• Occurs only on LOOKUP-like operations and READDIR

• Migration recovery does not change the namespace

• Implementation handles only leaf exports for now

• Client may not follow path from destination’s pseudo-fs
• Client may perform FSINFO or acquire lease expiration as

part of following pseudo-fs path, won’t necessarily do this
automatically as part of migration recovery

IETF 88, Vancouver, BC -- NFSv4 Working Group

NFS4ERR_MOVED
Recovery serialization

12

• Referral is handled synchronously in user context

• Treated like an automount operation, not a recovery

• Migration recovery must be serialized with state
recovery

• Therefore it’s handled in state recovery FSM

• Blocks all operation against source server

• Like state recovery, may occur on nearly any operation

IETF 88, Vancouver, BC -- NFSv4 Working Group

<Insert Picture Here>

Representing Lock State

13

IETF 88, Vancouver, BC -- NFSv4 Working Group

Representing State
Current recommendations

14

• Data structure organization

• RFC 3530bis, section 9.1.3: “stateids associated with a given
client ID are associated with a common lease”

• Thus, clients typically group state IDs under each client ID

• Servers may also take this approach

• TSM moves state IDs for one FSID to another lease

• May require significant data structure re-engineering

IETF 88, Vancouver, BC -- NFSv4 Working Group

Representing State
Protocol implications

15

• To support TSM, state IDs should be unique across
servers

• 9.1.3: “Each stateid must be unique to the server. Many
operations take a stateid as an argument but not a clientid, so
the server must be able to infer the client from the stateid.”

• Server discards migrated state if a state ID collision occurs

IETF 88, Vancouver, BC -- NFSv4 Working Group

Representing State
Protocol: Good news, bad news

16

• In NFSv4.0, all state-bearing ops also carry a FH
• NFSv4.1 FREE_STATEID is a fly in the ointment
• Different state ID structure for NFSv4.0 is required

• NFSv4.0 state IDs:
• Must contain a client ID
• Can rely on operation arguments for FSID/FH

• NFSv4.1+ state IDs:
• Can rely on SEQUENCE operation to identify the client
• Must contain FSID/FH (if TSM is supported)

IETF 88, Vancouver, BC -- NFSv4 Working Group

<Insert Picture Here>

Transport Management

17

IETF 88, Vancouver, BC -- NFSv4 Working Group

Transport Management
Challenges

18

• Migration recovery requires exclusive access to RPC
transport
• How do we suspend NFS tasks without adding overhead

during normal operation?
• How do we avoid deadlocks?

• Replacing a mount point’s RPC client context is
unsafe on Linux
• Therefore, existing context is modified in place
• Only the underlying transport is replaced

IETF 88, Vancouver, BC -- NFSv4 Working Group

Transport Management
Order of operation

19

• 1. Operations receiving MOVED are parked

• 2. Location discovery is performed

• 3. RPC transport is switched to the destination
• The part of the proof where “miracles occur”

• 4. Parked operations awoken, retried

• 5. Client then determines whether its state is still valid

IETF 88, Vancouver, BC -- NFSv4 Working Group

Transport Management
Switching RPC transport

20

• Step 3 from the previous slide, in detail

• a. Transport to source server is drained

• b. Client acquires fresh transport to destination server for the
migrating mount point

• c. Trunking detection, lease establishment may be performed

• d. FSINFO probe retrieves destination’s lease time, etc.

• e. Source transport is unblocked

IETF 88, Vancouver, BC -- NFSv4 Working Group

Transport Management
Slot table implementation

21

• NFSv4 slot table used to suspend NFS operations
• One slot table manages all operations for each server
• No server feedback on table size, always 1024
• Same performance overhead as NFSv4.1 session
• Same drain/wake-up points in state recovery as NFSv4.1

• New RPC transport replaces source’s RPC auth
cache
• GSS contexts are specific to a client-server pair
• Security re-negotiation may occur

IETF 88, Vancouver, BC -- NFSv4 Working Group

Take-away

22

• rfc3530-migration-update is well-covered

• Some important items remain untested
• Lease merging (server)
• Testing individual state IDs (may be unnecessary)
• DELAY on RELEASE_LOCKOWNER (new)

• Significant client redesign is required to support
migration recovery and TSM

• No new protocol-related issues were identified

IETF 88, Vancouver, BC -- NFSv4 Working Group

<Insert Picture Here>

Questions / Discussion

23

