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Sounding Our Recommendations
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• Before advancing rfc3530-migration-update:

• What part of this I-D has been prototyped and tested?

• What has not been prototyped, and why not?

• What interesting non-protocol issues have arisen in our 
prototypes?
• After fixing the protocol, is I-D complete?

• Note that NFSv4.1 migration is largely untested, and 
is not in the scope of rfc3530-migration-update



• Implementation of specific recommendations

• SETCLIENTID with Uniform Client Strings

• Some aspects of server trunking detection

• Location discovery accompanied by RENEW

• FSID presence checking accompanied by RENEW

• NFS4ERR_DELAY on FH-bearing operations
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rfc3530-migration-update
Prototype Coverage
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• Testing

• TSM in common usage scenarios

• Non-TSM in a few common usage scenarios

• Migration of Kerberos-protected shares

• Handling NFSv4 delegation during migration
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rfc3530-migration-update
Prototype Coverage
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rfc3530-migration-update
Prototype Gaps
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• Lease merging on destination server

• Full implementation of trunking detection as described

• Multiple FSID presence tests per compound

• Using zero-length READ as TEST_STATEID 
substitute

• NFS4ERR_DELAY on RELEASE_LOCKOWNER
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Why TSM is a Big Deal
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• Data-only migration
• After a migration, client performs state recovery to inform 

destination server of application lock state
• Server SHOULD provide a grace period to prevent theft of 

lock state while recovery occurs
• Time-limited grace may prevent full recovery or hold up 

application operation
• Transparent State Migration

• Destination server merges migrated lease with client’s 
existing lease, if there is one

• The client can resume operation against the destination 
server without CLAIM_PREVIOUS OPENs or a grace period

• No window for lock state loss
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Client Implementation Challenges
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• Trunking detection
• Visited in previous presentations

• Redirecting the RPC transport
• Or, how to provide NFSv4.1+ session semantics in NFSv4.0

• Referrals v. migration
• NFS4ERR_MOVED triggers both, but how does a client tell 

them apart?

• Lock state representation
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Handling 
NFS4ERR_MOVED
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NFS4ERR_MOVED
Establishing contact
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• With either migration or referral, destination server 
may be unfamiliar to client

• Trunking detection may be needed

• A fresh lease may be established

• Security negotiation may be needed
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NFS4ERR_MOVED
File system data structures
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• Referral, like mount, materializes a local superblock

• No other data or metadata yet exists

• Migration recovery must preserve existing superblock, 
inodes, and open/lock state data

• Including delegated state

• Non-TSM relies on client to preserve open/lock state
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NFS4ERR_MOVED
Client’s filename space
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• Referral alters client’s filename space (a.k.a. mount)

• Occurs only on LOOKUP-like operations and READDIR

• Migration recovery does not change the namespace

• Implementation handles only leaf exports for now

• Client may not follow path from destination’s pseudo-fs
• Client may perform FSINFO or acquire lease expiration as 

part of following pseudo-fs path, won’t necessarily do this 
automatically as part of migration recovery
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NFS4ERR_MOVED
Recovery serialization
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• Referral is handled synchronously in user context

• Treated like an automount operation, not a recovery

• Migration recovery must be serialized with state 
recovery

• Therefore it’s handled in state recovery FSM

• Blocks all operation against source server

• Like state recovery, may occur on nearly any operation
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Representing Lock State
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Representing State
Current recommendations
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• Data structure organization

• RFC 3530bis, section 9.1.3: “stateids associated with a given 
client ID are associated with a common lease”

• Thus, clients typically group state IDs under each client ID

• Servers may also take this approach

• TSM moves state IDs for one FSID to another lease

• May require significant data structure re-engineering



IETF 88, Vancouver, BC -- NFSv4 Working Group

Representing State
Protocol implications
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• To support TSM, state IDs should be unique across 
servers

• 9.1.3: “Each stateid must be unique to the server.  Many 
operations take a stateid as an argument but not a clientid, so 
the server must be able to infer the client from the stateid.”

• Server discards migrated state if a state ID collision occurs
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Representing State
Protocol: Good news, bad news
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• In NFSv4.0, all state-bearing ops also carry a FH
• NFSv4.1 FREE_STATEID is a fly in the ointment
• Different state ID structure for NFSv4.0 is required

• NFSv4.0 state IDs:
• Must contain a client ID
• Can rely on operation arguments for FSID/FH

• NFSv4.1+ state IDs:
• Can rely on SEQUENCE operation to identify the client
• Must contain FSID/FH (if TSM is supported)
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Transport Management
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Transport Management
Challenges
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• Migration recovery requires exclusive access to RPC 
transport
• How do we suspend NFS tasks without adding overhead 

during normal operation?
• How do we avoid deadlocks?

• Replacing a mount point’s RPC client context is 
unsafe on Linux
• Therefore, existing context is modified in place
• Only the underlying transport is replaced
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Transport Management
Order of operation
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• 1. Operations receiving MOVED are parked

• 2. Location discovery is performed

• 3. RPC transport is switched to the destination
• The part of the proof where “miracles occur”

• 4. Parked operations awoken, retried

• 5. Client then determines whether its state is still valid
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Transport Management
Switching RPC transport
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• Step 3 from the previous slide, in detail

• a. Transport to source server is drained

• b. Client acquires fresh transport to destination server for the 
migrating mount point

• c. Trunking detection, lease establishment may be performed

• d. FSINFO probe retrieves destination’s lease time, etc.

• e. Source transport is unblocked
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Transport Management
Slot table implementation
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• NFSv4 slot table used to suspend NFS operations
• One slot table manages all operations for each server
• No server feedback on table size, always 1024
• Same performance overhead as NFSv4.1 session
• Same drain/wake-up points in state recovery as NFSv4.1

• New RPC transport replaces source’s RPC auth 
cache
• GSS contexts are specific to a client-server pair
• Security re-negotiation may occur
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Take-away
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• rfc3530-migration-update is well-covered

• Some important items remain untested
• Lease merging (server)
• Testing individual state IDs (may be unnecessary)
• DELAY on RELEASE_LOCKOWNER (new)

• Significant client redesign is required to support 
migration recovery and TSM

• No new protocol-related issues were identified
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Questions / Discussion
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