NVO3 Architecture
draft-narten-nvo3-arch-01.txt
IETF88 – Vancouver
November 4, 2013

David Black, Jon Hudson, Larry Kreeger, Marc Lasserre, Thomas Narten
Changes -00 -> -01

• New section on distributed gateways
 – Optimize inter-VN communication, so NVEs tunnel directly to each other

• Replaced section on “push vs. pull”
 – Let’s not talk about “push” vs. “pull” generically
 – Interesting question are events leading to the need to obtain or propagate updates

• Improved text to better support adaptor offloads
NVE – NVA interaction

• For fault tolerance reasons:
 – Local NVA will be built out of multiple components
 – Individual components will have their own IP addresses

• How should NVE peer with local NVA?
 – Restricting NVA to single “floating” IP address is too limiting
 – Recommendation: require NVE support multiple addresses per NVA
 • NVE can failover to alternate addresses should NVA become unresponsive
 • Associate priorities with addresses to support load balancing, failover, etc.

• Followup question
 – Is all information available through a single address? Or can individual local NVA’s hold subsets of information (e.g., for particular VN’s)
 – Would simplify architecture if all information is available from any one peer
NVE – NVE interaction

- Data plane setup may involve NVE-NVE signaling
 - Security example: use IKE to set up IPsec between NVEs
- For control plane, if NVEs query other NVEs, why have NVA?
 - Requires full interconnection among NVEs
- However, NVEs can still provide hints related to forwarding:
 - No such VM at this location (but no indication of where it is)
 - VM has moved to another location (with pointer to new location)
 - But NVE should still check with NVA for authoritative answer
- Tenant multicast case tricky
 - When the membership and location of target VMs change, how can sender know?
 - Architecturally simpler if NVE can rely on NVA for this information
Data Plane Encapsulations

• There does not appear to be a need for a new encapsulation for NVO3
 – Key requirement is Context ID of sufficient size
 – Existing encapsulations seem adequate in practice
 – A place is needed, however, for maintenance and extension of “homeless” encapsulations (VXLAN, NVGRE)

• Control plane architecture should:
 – Support multiple encapsulations
 – Support gateways when NVEs do not share common encapsulation

• WG needs to make a decision one way or another
Next Steps

• WG needs to adopt and agree on what the architecture is
• Requirements difficult to specify when basic architectural choices have not yet been clearly decided
• Request formal adoption of document by WG
Questions?