RMT and FecFrame Retrospective

Brian Adamson and Vincent Roca
IRTF Network Coding Research Group (proposed)
7 November 2013
IETF 88 - Vancouver

Purpose

- Review IETF Reliable Multicast Transport (RMT) and FecFrame working group activities
 - Use of packet erasure coding for reliable multicast or unicast transport
 - IRTF RMRG activities preceding RMT formation
 - RMT "Building Block" approach
 - Handling of IPR
 - Other protocol design considerations
 - Lesson learned along the way

Some reliable multicast history ...

- 1980's Some pre-IP multicast work with broadcast ARQ using erasure coding frames
 - code combining, hybrid ARQ / FEC, etc at the MAC layer
- circa 1992 MBONE leading to scalable reliable multicast (SRM) in wb tool, and Image Multicast (IMM), etc
- mid 1990's- many protocols emerging incl: MDP (from IMM), SRM, RMTP, MFTP, RMDP, PGM, etc
- 1996 Packet erasure coding in reliable multicast (MDPv2, Luby Tornado code work, Rizzo's Reed-Solomon code work, first trickles of IP multicast data fountain concepts)
- 1997 RMRG formation
- 1999 RMT formation
- 2006 FecFrame formation (unicast <u>and</u> multicast)
- 2013 FecFrame closure, charter completed
- 2013 RMT closure, charter completed

RMRG Activities

• Goals:

- Determine scope and approach for appropriate reliable multicast standardization
- Identify congestion control mechanism to enable Internet safe deployment of reliable multicast

Results

- Building block approach for <u>family</u> of protocols to provide "bulk transfer" delivery
 - NACK-based, Tree-based, and "open loop" FEC
- TCP-Friendly multicast congestion control
 - Equation-based rate controlled TFMCC (DCCP variant)
 - PGMCC window controlled

RMT Building Block Approach

^{*} Unrealized building blocks

RMT Standards Track Protocols

NORM

- Bulk content objects <u>and</u> stream delivery including "message stream" feature
- ARQ with/or FEC erasure coding repair
- Single-rate TCP-Friendly and alternative congestion control options
- Dynamically adapts to network with round-trip timing measurement to scale protocol timers

ALC

- "Open loop" FEC erasure coding reliability
- Multi-rate congestion control support (still experimental)
- Implementations available with low complexity Raptor(Q), Reed-Solomon and LDPC codecs

Separable Protocol Aspects

- For example, different aspects of NORM are separable and even "pluggable"
 - Reliability
 - FEC type and parameters
 - Proactive FEC only (no receiver feedback, like ALC)
 - Hybrid reactive / proactive ARQ and FEC
 - Congestion Control
 - Fixed-rate operation
 - TCP-Friendly NORM-CC (NORM TFMCC realization)
 - Other (e.g. experimental ECN-based NORM-CCE)
 - Flow Control
 - Explicit (e.g. ACK-based)
 - Implicit (e.g. timer/NACK-activity based)
 - Disabled (e.g. real-time flows)
- And it's the same with ALC ...

Case study: FEC Building Blocks

- Standardized code point identifiers for FEC algorithm type
- Standardized FEC packet payload identification (FPI)
 - objectId:blockId:segmentId tuple
 - "in transit" identifier only
- Standardized FEC Object Transport Information (OTI)
 - Object size, encoding scheme and parameters
 - Multiple means to convey information to participants

RMT deployments

- FLUTE/ALC
 - 3GPP-MBMS (Multimedia Broadcast and Multicast Services) and similar standards
 - integrate FLUTE/ALC
 - integrate Raptor / Raptor(Q)
 - ISDB-Tmm integrates LDPC-Staircase
- NORM
 - Multiple US government / DoD uses
 - CATV video on demand content distribution

RMT outputs are widely deployed and used worldwide ©

FecFrame Working Group

- Design a framework to enable the application of FEC codes to arbitrary packet flows over unreliable transport protocols, in unicast or multicast
 - main use cases are for continuous media flows
- midway between RTP and RMT work
 - RTP offers limited FEC support... FecFrame goes much father
 - inherits from RMT many concepts and FEC code specifications

FecFrame outputs

- FecFrame architecture (RFC 6363)
- several FEC schemes:
 - Raptor(Q), Reed-Solomon, LDPC, 1-D interleaved
 XOR
- signaling docs
 - configuration, SDP, pseudo-CDP
- FecFrame included inside the 3GPP-MBMS standard

Intellectual Property Rights

- The building block approach enabled some management of IPR issues
- Some FEC code types had IPR disclosures, but (mostly) the protocol mechanisms were clear of IPR
- FEC codecs treated similar to multimedia (i.e. voice, video) codecs
 - Thus, IPR becomes mostly an implementation detail and choice.
- IETF handling of IPR disclosure worked fairly well
 - several constructive IPR discussions took place and enabled to clarify the situation

Some lessons learned

- Building block approach was beneficial
 - MANET WG has adopted similar approach for its standards track protocols
- Common packet formats for ALC and NORM would have been nice
 - however compatible header extension concepts in both families enable some reuses
- End system node identification challenge
 - NORM uses something like RTP "SSRC" identifier but more flexible approach would be beneficial
- Benefits of RMT protocols for unicast use cases have been surprising

Some unfinished business ...

- Unequal error protection concepts introduced towards end of working group activities
- Potential for some additional congestion control specifications (e.g. NORM-CCE)
- Additional FEC schemes?
- Distributed session management / control

Some of the same concepts can be re-applied at other protocol layers (application, forwarding, etc) as part of a more encompassing network coding strategy