Not so random RLC
AL-FEC codes

Kazuhisa Matsuzono, Vincent Roca
Inria, France

IETF88, NWCRG meeting
Nov. 7th, 2013, Vancouver
Note well

- *we, authors, didn’t try to patent* any of the material included in this presentation

- if you believe some aspects may infringe IPR you are aware of, then fill in an IPR disclosure and please, let us know

 http://irtf.org/ipr
Motivations and goals
Motivations

- RLC are naturally random
 - encoding vectors on a given Finite Field (FF) are random
 - it’s easy, efficient, and enables coding *inside the net*

- but there are incentives to have “structured” codes
 - sparse codes are faster to encode/decode
 - an order of magnitude difference, because:
 - fewer XOR and/or FF symbol operations
 - fast ITerative (IT) decoding works better
 - certain structures are extremely efficient
 - e.g., LDPC-Staircase [RFC5170] [WiMob13]
 - e.g., irregular LDPC codes perform the best with IT decoding

Goals of this work

- design codes that:
 - can be used as **sliding/elastic encoding window** (A.K.A. convolutional) and **block** codes
 - there are use-cases for each approach

- can be used with encoding window/block sizes in **2-10,000s symbols** range
 - very large sizes are beneficial to bulk file transfers while small values are useful for real-time contents

- can be used as **small-rate** codes
 - can generate a large number of repair symbols
 - even if it’s rarely useful (e.g. it was not a selection criteria for 3GPP-MBMS [WiMob13]), it also simplifies performance evaluations 😊
Goals of this work... (cont’)

- have excellent erasure recovery performance
 - often a complexity versus performance tradeoff
 - it’s good to be able to adjust it on a per use-case basis

- enable **fast** encoding and decoding
 - sender and/or receiver can be an embedded device

- enable **compact and robust signaling**
 - transmitting the full encoding vector does not scale
 - prefer the use of a function that, as a function of a key lists the symbols that are considered
 - can be a PRNG + seed
 - can be a table + index
 - the function is known to both ends and the (e.g., 32-bit) key is carried in the packet header
Goals of this work... (cont)

- focus **only** on use-cases that require **end-to-end** encoding
 - “end” means either “host” or “middlebox”, it’s the same
 - there’s a single point for AL-FEC encoding/decoding
 - because it simplifies signaling and code design
 - intermediate node re-encoding requires having the symbols encoding vectors which does not scale

- sure, it’s a subset of NWCRG candidate use-cases
 - e.g., it’s well suited to Tetrys
 - but also to FLUTE/ALC, FCAST/ALC, FCAST/NORM, FECFRAME protocols
Our proposal
Experimental results of this presentation...

- use our http://openfec.org open-source project
 - uses a mixture of CeCILL(-C) (GPL and LGPL like), “BSD like” licenses

OpenFEC.org
because open, free AL-FEC codes and codecs matter

- for the moment we’ve integrated Kodo RLC lib…
 - …but we’ll get rid of it ASAP
 - because STEINWURF research license is not compatible with our goal of free, reusable software in any context, commercial or not

- all measurements are made in block mode
 - because it’s the way our http://openfec.org tools work…
 - … but we’ll update it
Idea 1: mix binary and non-binary

- mix binary and non-binary
 - most equations are sparse and coefficients binary
 - a limited number of columns are heavy
 - dense binary columns
 - dense non-binary columns (e.g., with coeff. on GF(2^8))

- there are good reasons for that:
 - sparseness is a key for high encoding/decoding speeds
 - density/non binary are good for recovery performances
 - gathering dense coefficients in columns (i.e. to certain symbols) is a key for high speed decoding [WiMob13]

http://hal.inria.fr/hal-00850118/en/
Idea 1: mix bin and non-bin... (cont')

- block code example
 - (sparse + non-bin. columns) only

<table>
<thead>
<tr>
<th>source symbols</th>
<th>repair symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s_0 \ s_1 \ldots \ s_{19} \ s_{20} \ldots \ s_{39})</td>
<td>(r_0 \ r_1 \ r_2 \ldots)</td>
</tr>
<tr>
<td>(1 \ 0 \ldots \ 1)</td>
<td>(29 \ 0 \ 0 \ldots \ 1)</td>
</tr>
<tr>
<td>(0 \ 1 \ldots \ 1)</td>
<td>(62 \ 1 \ 0 \ldots \ 0)</td>
</tr>
</tbody>
</table>

sparse binary part

sparse binary part

\[H = \]

dense non-binary columns over GF(2^8)

\[r_0 = s_0 + \ldots s_{18} + 29 s_{19} + \ldots s_{38} + 77 s_{39}\]
Idea 1: mix bin and non-bin... (cont')

- convolutional code example
 - (sparse + non-bin. columns) only

```c
/* r points to repair symbol to build */
memset(r, 0, pkt_sz);
for (each source symbol s in current encoding window)
  if (s identifier %(1/D_nonbin) == 0)
    /* non binary column */
    /* non binary column */
    choose a non-bin coefficient, c;
    r ^= c * s;
  else
    /* binary part */
    do r ^= s with probability D_bin
```

- NB:
 - it’s the same except that the encoding windows moves over the source symbol flow (convolutional mode) instead of being fixed (block mode)
On the usefulness of non-bin columns

Test 1: **no** dense non-binary column

binary density 1/2 (RLC), 1/5, 1/10, 1/20

<table>
<thead>
<tr>
<th>Test 1: no dense non-binary column</th>
</tr>
</thead>
<tbody>
<tr>
<td>binary density</td>
</tr>
<tr>
<td>1/2 (RLC)</td>
</tr>
<tr>
<td>1/5</td>
</tr>
<tr>
<td>1/10</td>
</tr>
<tr>
<td>1/20</td>
</tr>
</tbody>
</table>

average decoding inefficiency ratio

<table>
<thead>
<tr>
<th>k (in symbols)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>150</td>
</tr>
<tr>
<td>200</td>
</tr>
<tr>
<td>250</td>
</tr>
<tr>
<td>300</td>
</tr>
<tr>
<td>350</td>
</tr>
<tr>
<td>400</td>
</tr>
<tr>
<td>450</td>
</tr>
<tr>
<td>500</td>
</tr>
</tbody>
</table>

target average overhead 10^{-3}

none achieves 10^{-3} average overhead!
On the usefulness of non-bin cols... (cont')

Test 2: with dense non-binary column (1 every 40 cols)
binary density 1/2, 1/5, 1/10, 1/20

10^{-3} average overhead target is achieved when k>200,
(we can further add more non-bin columns to improve it...)
Idea 2: add a structure

- technique 2: add a structure to the right part of H
 - we know that a “staircase” (A.K.A. double diagonal) is highly beneficial…

\[
H = \begin{bmatrix}
0 & 1 & 0 & 0 & 1 & \cdots & 0 & 0 & 1 & 1 & \cdots & r_0 & r_1 & \cdots & r_{n-k+1} \\
1 & 0 & 0 & 1 & 0 & \cdots & 1 & 1 & 0 & 1 & \cdots & 1 & 1 \\
0 & 0 & 1 & 0 & 0 & \cdots & 0 & 0 & 0 & 1 & \cdots & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & \cdots & 0 & 1 & 0 & 1 & \cdots & 1 & 1 \\
\end{bmatrix}
\]

- … but when used in convolutional mode, signaling turns out to be prohibitively complex
 - the problem lies in the reliable description of what symbols are part of all the previous repair packets, in case they are lost, when the encoding window moves in a non predictive way (e.g., Tetrys/elastic encoding window)
Idea 2: add a structure... (cont’)

- so we add a **single heavy row** and make all repair symbols depend on it
 - it’s now quite simple, even when used in convolutional mode
 - several sums will be transmitted (e.g., periodically), and it is sufficient to identify the last symbol of the sum in the signaling header
 - it’s efficient (see later), at the price of extra XOR operations

\[H = \]

\[\begin{bmatrix}
 1 & 1 & 1 & 1 & 1 & 1 & 1 & \ldots & 1 & 1 & 1 \\
 1 & 0 & 0 & 1 & 0 & \ldots & 1 & 1 & 0 \\
 0 & 0 & 1 & 0 & 0 & \ldots & 0 & 0 & 0 \\
 \vdots & \vdots \\
 0 & 1 & 0 & 1 & 0 & \ldots & 0 & 1 & 0 \\
\end{bmatrix} \]

- NB: other ways to define heavy rows are feasible (e.g., with random coefficients over GF(2^8)...)
On the usefulness of heavy repair symbols

It's just an average result, so let's do a close-up for $k=200$.

![Graph showing the relationship between average decoding inefficiency ratio and k (in symbols). The graph compares scenarios with and without heavy repair symbols.](image)
On the usefulness of heavy repair... (cont’)

- Decoding failure probability = f(# symbols received)

 Enables in-depth analysis, catching rare events

Similar behaviors for very low overheads

Without heavy repair

But significant number of tests fail for higher overheads 😞

With heavy repair

At 0 overhead, succeeds 92.1% of time

With a heavy repair symbol, there’s no such behavior 😊
Let’s put ideas 1 and 2 together

- 3 key parameters
 - \(k \): source block or current encoding window size
 - \(D_{\text{nonbin}} \): controls number of heavy non-binary columns
 - \(D_{\text{nonbin}} = \text{nb}_\text{non-binary coeffs} / k \)
 - \(D_{\text{bin}} \): controls the density of the sparse sub-matrices
 - \(D_{\text{bin}} = \text{nb}_1 \text{coeffs} / \text{total nb coeffs in binary submatrix} \)
 - \(\{D_{\text{nonbin}}, D_{\text{bin}}\} \) depend on \(k \) and target max. overhead

\[
H = \begin{bmatrix}
S_0 & S_1 & \cdots & S_{k-1} & r_0 & r_1 & \cdots & r_{n-k+1} \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & \cdots & 1 & 1 & 1 \\
1 & 0 & \cdots & 1 & 29 & 0 & 0 & \cdots & 1 & 77 & 0 & 1 \\
0 & 1 & \cdots & 1 & 62 & 1 & 0 & \cdots & 0 & 18 & 1 & 0 \\
\text{sparse} & \text{binary} & \text{part} & \text{sparse} & \text{binary} & \text{part} & \text{sparse} & \text{binary} & \text{part} & \text{sparse} & \text{binary} & \text{part} \\
\end{bmatrix}
\]

\text{dense non-binary columns}
Finding the right \((D_{\text{nonbin}}, D_{\text{bin}})\) values

- set a target average overhead (e.g., \(10^{-3}\))
- then:

 for \((k \in [2, 10000])\)
 carry out experiments with fixed \(D_{\text{bin}}=1/2\),
 increasing \(D_{\text{nonbin}}\) until we achieve an average
 overhead below \(\alpha \times 10^{-3}\), where \(\alpha < 1\) is a
 “security margin”;
 for this \(D_{\text{nonbin}}\), carry out experiments by
 reducing \(D_{\text{bin}}\) as much as possible while
 remaining below target overhead \(10^{-3}\)

- store all results in a table

- basically:
 - only non-bin columns for very small \(k\)
 - only bin columns for very high \(k\)
 - a mixture of both in between…
Preliminary results

In practice it will be a single curve for a single code

NB: results are presented here as the concatenation of small curves…

target average overhead 10^{-3}
Two close-ups

- decoding failure probability curves for k=200, 500
 - no visible error floor at 10^{-6} failure probability, which is excellent 😊

Graphs showing decoding failure probability for different numbers of samples and received symbols for k=200 and k=500.
Conclusions and Future Works
Conclusions

● our proposal tries to take the best of RLC
 ○ use the right technique (bin vs. non-bin) at the right time, in the right way
 • find balance between erasure recovery perf. and complexity

● our proposal tries to fill in the gap between sliding/elastic encoding window and block codes
 ○ side question: what about ALC and FECFRAME versions capable of using convolutional codes
 • instead of being stuck to block AL-FEC?

● our proposal has a more limited scope than RLC
 ○ but it is suited to concrete use-cases
 • in IRTF/NWCRG (e.g., Tetrys)
 • in IETF/RMT and FECFRAME
Conclusions... (cont’)

- many key questions remain
 - what are the **performances** when used in sliding or elastic encoding window?
 - e.g. with Tetrys
 - **how fast** is it?
 - e.g., compared to our optimized LDPC-Staircase/RS codecs
 - **how does it scale** with k?
 - e.g., compared to our optimized LDPC-Staircase codec
 - define **signaling** aspects
 - FEC Payload ID (in each packet sent)
 - FEC Object Transmission Information (per object/session)