
Loss Tolerant TCP (LT-TCP): 
Implementation and Evaluation

Koushik Kar
Rensselaer Polytechnic Institute

Bishwaroop Ganguly 
MIT Lincoln Labs

Nathan Hourt 
Rensselaer Polytechnic Institute



Outline

❖ Motivation

❖ LT-TCP overview

❖ Performance experiments and results

❖ Ongoing efforts and Future directions

❖ Short demo



LT-TCP: History & Acknowledgements

❖ Protocol proposed in 2007; ns-2 simulation study 

❖ Linux kernel implementation effort since 2011
★ Joint effort between RPI and MIT Lincoln Labs

❖ Key collaborators:
★ Shiv Kalyanaraman (RPI; now at IBM), K.K. Ramakrishnan

(AT&T)
★ Vijay Subramanian, Vicky Sharma, Brian Molnar, Buster 

Holzbauer, Nico Sayavedra, Jeff Wright, Jay Chamberlain, Kevin 
Battle (RPI students)



TCP under Lossy Conditions

❖ Observations:
★ Drastic falloff in 

performance with PER
★ Performance very bad 

for high loss, delay:
๏ 5%+ loss rate 
๏ 100 ms+ RTT

❖ Causes:
★ TCP can not distinguish 

between congestion 
loss and link loss
๏ Backs off on each loss

★ Recovers from link 
losses through 
retransmissions

TCP-SACK Degradation with increased erasure rate and
RTT (i.i.d. erasure probabilities. 10 MB/s capacity, one flow)



How to fix TCP ?

❖ We have proposed Loss Tolerant TCP (LT-TCP)
❖ Key ideas:

★ Use Explicit Congestion Notification (ECN)
๏ TCP-like congestion control algorithm, but only responsive to ECN, not 

arbitrary losses
★ Use Forward Error Correction (FEC) to correct for erasures

๏ Proactive FEC (PFEC): sent pre-emptively to minimize recovery latency
๏ Reactive FEC (RFEC): sent later as required (i.e. PFEC proves insufficient)
๏ Use loss estimation for FEC provisioning

★ Separation of reliability and congestion control
๏ The reliability mechanism (FEC provisioning) can be viewed as “sitting 

above” the window control mechanism
❖ We have implemented LT-TCP as a peer to TCP in the 

Linux kernel



Key Considerations for Robust Transport

❖ Robust to difficult (e.g. lossy, long delay, bandwidth-
limited) networks
★ MANET, Airborne, SATCOM

❖ Performs in stable networks
★ Internet, high-rate links
★ Match TCP performance

❖ Minimal reprogramming complexity for applications
★ Low effort level for reprogramming of TCP applications
★ Minimum of network knowledge required from programmer 

❖ End-to-end
★ Minimize support from internal network components 

❖ Implemented in the kernel



Related Work



LT-TCP: Proactive and Reactive FEC
❖ Properties:

★ Data encoded in blocks
๏ Erasure coding used 

★ Data + PFEC sent in the 
initial transmission

★ Received data + PFEC + 
RFEC used to recover 
original data
๏ Block recoverable as long as 

the number of packets (Data 
or PFEC/RFEC) received is 
no less than the number of 
data packets in block

★ Receiver feedback used to 
compute loss estimate
๏ Used to determine how much 

PFEC, RFEC should be sent 



LT-TCP Components



LT-TCP Testbed



Performance Comparison Description

❖ Overview: Set of 10MB file transfer results over the same 
testbed for three transport protocols
★ TCP-SACK
★ LT-TCP
★ NORM

❖ Parameters
★ Packet erasure rate (correlated, uncorrelated) 

❖ Configuration
★ No congestion
★ NORM protocol was parameterized with line rate of testbed



NORM Details

❖ Transport protocol for both multicast and unicast proposed 
and implemented by Naval Research Laboratory (NRL)
★ Provides robust performance in the presence of packet losses
★ Implemented as user-space code 
★ Can be called as a library or in “proxy” mode; we used library
★ Download:src-norm-1.5b1.tgz; Site:http://downloads.pf.itd.nrl.navy.mil/norm/

๏ Used normFileSend.cpp, normFileRecv.cpp applications 

❖ Summary
★ Uses FEC to repair errors, FEC also sent proactively in implementation
★ Has some form of congestion control (not used here)
★ Leverages user-supplied information for flow control

At high loss rates, TCP-SACK performance is extremely poor/crashes;
NORM is a better performance comparison candidate



Performance under Correlated Losses



SATCOM Configuration Testbed



Performance under Long Delays



Summary and Directions

❖ LT-TCP implementation/evaluation summary
★ Familiar socket programming model 
★ File transfer performance robust to loss rate, loss correlation
★ File transfer performance robust to long RTT
★ Comparisons to TCP-SACK, NORM (plan to do CTCP soon)

❖ Ongoing efforts and future directions
★ Completion of portability upgrade
★ Testing of ECN reaction code
★ Exploration of alternate congestion control techniques
★ Integration with applications and performance testing 

❖ Demo
★ Image (file) transfer comparison between TCP and LT-TCP



Thank you!

Questions?


