
Asymmetric Key Token Type 
for OAuth 2.0

Proof-of-Possession Tokens using Asymmetric Keys



Background

• OAuth 2.0 initially standardized only bearer tokens
• MAC tokens are proposed in draft-ietf-oauth-v2-http-mac to expand 

token types to include symmetric Proof-of-Possession (PoP) tokens
• To avoid canonicalization issues draft-tschofenig-oauth-hotk moved 

this to JWT and proposed an asymmetric key scheme based on TLS.
• MAC tokens:

• Can be more efficient than asymmetric cryptography for the PoP
• However, they require encryption to distribute the MAC key, which 

in turn requires pre-sharing of encryption keys between 
authorization server and resource server



Asymmetric Key Token Design Goals

• Proof-of-Possession token type that:
• Does not require encryption and associated key management
• Can be used as a refresh token to require PoP when obtaining short-lived 

bearer or MAC access tokens
• Otherwise, mostly similar to the MAC token

• Asymmetric computation will be less efficient than MAC computation, 
however:

• This may be acceptable for infrequent operations
• Asymmetric computations can be made less frequent by using this as a 

refresh token



Asymmetric Key Token Type

• Key Distribution
• Client provides signing public key to server in the authorization request
• To client: Server includes two parameters with the access token:

• pub_key: Signing public key for token
• kid: Key ID

• To resource server: Server includes above parameters in the access token
• Authenticator

• Input to signature computation is similar to the MAC token
• However, canonicalizing the signature input was a major issue with OAuth 1.0
• This is avoided by using a JWT, rather than signing HTTP headers and body parts
• The attribute value is a JWT

• Verification is simply JWT signature validation



Asymmetric Key Token Type

• Proposed algorithms
• ECDSA P256 SHA256
• RSASSA-PKCS1-V1_5 SHA-256

• Security considerations
• The authorization server does not do key generation, which would require 

entropy
• Authorization server must ensure the authenticity of pub_key during request
• Client may wish to use different pub_key for different resource servers (and 

also for different sessions to same resource server) for privacy reasons
• Next steps – update draft-tschofenig-oauth-hotk

• Generic solution approach


	Asymmetric Key Token Type for OAuth 2.0
	Background
	Asymmetric Key Token Design Goals
	Asymmetric Key Token Type
	Asymmetric Key Token Type

