Secure Transport for PCEP
draft-lopez-pce-pceps

IETF88 – Vancouver

Diego R. Lopez - Telefónica (diego@tid.es)
The Goals

• Secure PCEP exchanges
 – Peer authentication and authorization
 – Data exchange integrity
 – Data exchange confidentiality
• Do not require change to current PCEP internals
• Do not preclude future extensions
• Allow emerging applications
TLS plus TCP-AO

• TLS
 – Transport-layer security on top of TCP
 – Common practice in several application environments
 – Unobtrusive
 – Several methods for peer identification
 • PKIX certificates being by far the most employed
 – Authentication attributes derived from peer identity token(s)
 • Flexible authorization based on attributes
 – Integrity and confidentiality

• TCP-AO
 – Authenticated source for TCP packets
 – Relies on external key management
 – Integrity of the transport stream
Why TLS plus TCP-AO

• Unobtrusive
• Satisfy security requirements
• TLS is a well-known and established practice
 – Above all, richer identity management
 • Dynamic decision on peer identity and rights
 • Attribute-based access control
 • Attribute-based policy
 – Supporting richer models
 • Dynamic discovery
 • Flexible hierarchies
 • Inter-domain agreements
 • Future SDN-based approaches
• TCP-AO is complementary to TLS
 – Enhanced security of the transport stream
 – Able to rely on TLS for key management
PKI (Generally Speaking)

• Does not imply
 – A single, global root of trust run by an external party
 • Several are possible (and desirable in many cases)
 • As local as is required
 – Additional complexity on key management or cumbersome administrative procedures
 • Beyond whatever PSK mechanism implies

• And brings
 – Dynamic trust links
 – Application of identity-based policies
PCEPS

- Reserved port for PCEP operation on TLS
 - No inline TLS start negotiation
 - Port number allocation to be requested to IANA

- TCP-AO usage is OPTIONAL
 - Recommended for long-lived connections
 - Possible Master Key Tuple derivation from TLS key material

- TLS 1.2 with
 - REQUIRED mutual peer authentication
 - REQUIRED integrity
 - RECOMMENDED confidentiality
 - OPTIONAL compression

- Peer authentication by means of certificates
Peer AuthN / AuthZ

• Certificate validation by
 – PKIX trust models
 • RECOMMENDED check of FQDN and/or IP address
 – Trusted certificates by means of fingerprints
 • Almost PSK
• OPTIONAL application of additional checks on attributes transported in the certificate
 – FQDN(s) and IP address(es)
 – Issuer and Subject
 – Alternate names
 – Certificate policies
 – Key usage
 – . . .
Coming Steps

• PCEPS port
• DANE applicability
• Connection with discovery
 – IGP advertisement
 – DNS-based
• Linking TCP-AO and TLS
 – Delineate conditions for requiring both
 – MKT management