Secure IGMP/MLD

draft-atwood-pim-sigmp
draft-atwood-mboned-mrac-req
draft-atwood-mboned-mrac-arch

J. William Atwood
Bing Li

Concordia University, Montreal
Overview

- Exploring the area of Receiver Access Control for IP Multicast
 - Subtitle: Making money using IP Multicast
 - Covers some of the same concerns as those of the “well-managed multicast” work that was presented in MBONED three years ago
 - much smaller scope of interest
 - MBONED: “application” level drafts
 - PIM: “network” level drafts
Two Assumptions

- The End User (EU) acquires a “ticket” from a “Merchant” (or anyone else) containing:
 - Session Descriptor
 - Secure End User authentication
 - Possibly, an encryption key for the data stream

- The “Network Representative” has information on how to validate a “ticket” or assess the authorization of the EU or EU Device

- This makes the discussion today independent of the business model in use by the NSP and/or CP

- It restricts the scope of the work
Two levels of interaction

- **Application Level**
 - EU presents the “ticket”
 - Goal: Join the group

- **Network Level**
 - End User Device issues IGMP/MLD

- To ensure that only legitimate subscribers get access
 - MUST be secure at Application Level
 - MUST be secure at Network Level
Two Approaches

- **Solution 1**
 - Carry the “ticket” in an extended network-level join exchange
 - The security of the two levels is implied by the fact that they are carried in a single level of message exchanges, which are secured

- **Solution 2**
 - Provide separate secure application level join and secure network level join functions, along with a method for explicitly coordinating them
Extending IGMP

- Long history of attempts to extend IGMP
 - All of them abandoned
 - All were “restricted” solutions
 - Based on a particular version of IGMP, -OR-
 - Proposed a limited set of authorization methods
 - List of citations in the draft

- None of these attempts considered “accounting” specifically
Securing IGMP/MLD

- One IRTF Internet Draft on securing IGMP
 - Once a device established a secure relationship with its router, it was allowed to send a join for any group.
- RFC 3376 suggests using AH to secure IGMP packets
- RFC 3810 is silent on the issue of securing MLD packets
- None of these attempts considered “accounting” specifically
 - No need to deploy the solution if accounting is unnecessary!
Approach

- We choose Solution 2
 - Reasons are in draft-atwood-mboned-mrac-req
- The Application-level requirements and the Interaction requirements in mrac-req are met in such a way that the End User and the NSP Representative will share a key
- This key can be used to derive keys for protecting MLD/IGMP
- A set of Network-level requirements remains
Requirements

- Network level constraints (for secure IGMP/MLD)
 - Maximum Compatibility with MLD and IGMP
 - Group Membership and Access Control
 - Minimal Modification to MLD/IGMP
 - Multiple Network Level Joins for End User Device
 - NSP Representative Differentiates Multiple Joins
 - Network Level Interaction must be Secured
Open vs Secure Groups

- **Open Group**
 - No access controls
 - Operations will follow standard IP multicast rules (3376 or 3810)

- **Secured Group**
 - Access controls to prevent an unauthorized EU from accessing the group
 - Additional operations are needed
 - IGMP/MLD exchanges are protected with IPsec, using the derived keys
Unsecure Query

Q

EU1

GQ V2, V3

Source

EU2

224.0.0.1

No group

EU3

NQ

GQ V2, V3

Destination

224.0.0.1

No group

NQ

EU1

GSQ V2, V3

G_IP

Single group

EU2

EU3
Secure Query

- Q
 - EU1
 - EU2
- NQ
 - EU3

- GSQ V2, V3
- GSSQ V3
- Secure
- G_IP
- Single group
IGMP v2/v3 Query

- The GQ is an “open” solicitation, for all groups, and so cannot be secured with information that is specific to one group. So, it has no “secure” form.

- The GSQ (v2 and v3) and GSSQ (v3 only) are specific to a group, and so can be secured with parameters that are specific to that group. No change is necessary to the packet format; we only need to protect the packet with IPsec.
Unsecure Report

R V2

Unsecure Suppression
G_IP
Single group

R V3

Unsecure NO suppression
224.0.0.22
Multiple groups
IGMP v2/v3 Report

- The details of the v2 report and the v3 report are quite different, because different design decisions were made on how to minimize traffic:
 - In v2, a Report contains only information about one group, but identical reports from other hosts should be suppressed.
 - In v3, multiple groups may be contained in a single Report, which is sent to a common address (224.0.0.22)
Secure IGMP v2/v3 Report

- Since the cryptographic protection must of necessity be specific to a group,
 - We cannot use address 224.0.0.22
 - We cannot have multiple groups in a Report message
- We are interested in minimum change to IGMP
 - Our solution requires no change to the packet format
- We are interested in maximum compatibility
 - Our solution does not change the semantics of IGMP for “open” groups
Secure Report

R V2
Secure
NO suppression
G_IP
Single group

R V3
Secure
NO suppression
G_IP
Single group
Multicast Security Associations for Secure IGMP

- Many distinct Multicast Security Associations are required on each network segment:
 - One with Q as the sender, and NQ plus the admitted members as receivers
 - One for each legitimate participant EU, with the EU as the sender, and NQ plus Q as the receivers
 - All are uni-directional, as defined in RFC5374
Three external problems

- Three problems are solved in a different document:
 - Determining the keys for these MSAs
 - Determining the Security Parameter Index to use
 - Distributing the keys and the SPIs to the participants who need them
Results

- Secure Authentication of IGMP
- Assuming that the keys are derived from the upper-level exchanges, the IGMP authentication and authorization is tied to the “ticket” of the End User
- Minimal modification of IGMP semantics, and no modification of IGMP packet format
- Compatible with all currently deployed versions of IGMP
Documents

- **Issued**
 - MRAC Requirements
 - draft-atwood-mboned-mrac-req
 - MRAC Architecture
 - draft-atwood-mboned-mrac-arch
 - Secure IGMP
 - draft-atwood-pim-sigmp

- **To Come**
 - Using PANA+EAP to achieve the MRAC
 - Secure MLD
 - GSAM (coordination of Secure IGMP end points)
Salekul Islam contributed significantly to mrac-req and mrac-arch
Next Steps

- Request for feedback (on the list or elsewhere)
- Eventual adoption of all three -pim documents as WG documents
Thank You!

Questions?