BF-based chunk availability compression for PPSP

Lingli Deng: denglingli@chinamobile.com
Jin Peng: pengjin@chinamobile.com
Yunfei Zhang: hishigh@gmail.com
Rachel Huang: rachel.huang@huawei.com
IETF 88@Vancouver
Outline

• Recap: BF scheme for PPSP
• Changes since -02
• Open issues
• Next steps
Recap: Motivation

• There are frequent bitmap exchanges in PPSP.
 – Uncompressed bitmap is relatively big (of several KBs).
 – They are exchanged frequently (less than several seconds).
 – It sets a limit to the system's efficiency and scalability

• There are efficiency requirements in PPSP PS
 – PPSP.TP.REQ-3: The tracker protocol MUST take the frequency of messages and efficient use of bandwidth into consideration, when communicating chunk availability information.
 – PPSP.PP.REQ-7: The peer protocol MUST take the frequency of messages and efficient use of bandwidth into consideration, when communicating chunk information.

• Existing schemes proposed involves uncontrollable worst case performance.
Recap: BF compression Scheme

BF (set S, integer m, hash set H)
1. filter=allocate m bits initialized to 0;
2. for each element x_i in S do
3. for each hash functions h_i in H do
4. filter[$h_i(x_i)]$=1;
5. return filter;

MT (element elm, BF filter, integer m, hash set H)
1. for each hash functions h_i in H do
2. if (filter[$h_i(elm)]$!=1)
3. return false;
4. return true;

ST (BF query, BF filter)
1. temp=query OR filter;
2. if (temp!=filter)
3. return false;
4. return true;

Figure 1 Basic algorithms for BF-bitmaps.

Figure 2 Bloom Filters: an example.

High Efficiency

Storage/transmission: Bit length: constant.

Processing: Formation/Inquiry/Update: constant.

Endurable Lose of accuracy

Be controlled by the system configuration of the bit array’s length, choice and # of hash functions.

Example: a 2GB movie file, divided into 2MB chunks, whose a 1024-bit original chunk bitmap, can be represented by a 128-bit BF-bitmap (using 4 hashes), with only 3% mis-hits rate.
Recap: Proposals for integration with PPSP family

• **RECOMMENDED** for PPSP-TP-base/extended
 - Strictly controllable cost for a central entity
 • constant bit-length irrelevant of the chunk-set
 • only replacement or simple bitwise operations needed
 - Certain mis-hits rate **COULD** be tolerable
 • Tracker serves as an initial broker for neighboring peers

• **OPTIONAL** for PPSPP
 - Peers willing to trade accuracy with cost-efficiency
 • Peers with limited computation/memory resources
 • Peers with huge number of concurrent links, e.g. SNs
 - Certain mis-hits rate **MAY** be tolerable
 • REQUEST and DATA **SHOULD** use the original chunk id.
Changes since -02

• Add Rachel Huang (from Huawei) as co-author
• Changes to BF-based Chunk Availability Exchange
 – Use offline per swarm configuration instead of online notification via tracker protocol for BF parameters
 – Integrate with extended tracker protocol via “StatisticsGroup” element for STAT_REPORT messages
 – Integrate with peer protocol via a new chunk addressing method
BF Algorithm Configuration

• Suggestion: per swarm offline configuration
 – BF configuration be stored at the web portal and published to a requesting peer through the web page or MPD file transaction.

• Proposal: add description to the "Installation and Initial Setup“ in base TP
 – "In case of a peer or the tracker wishes to exchange further information about the available peers in a flexible way, e.g. the chunk availability information of a specific peer in the same swarm could be represented in a various ways, there should be a way of indication about the specific method/parameters in use, e.g. in the MPD file downloaded by the requesting peer from the web portal."
Integration with Extended TP

- **StatisticsGroup in EXT TP**
 - "StatisticsGroup" element in STAT_REPORT message extended to contain contentmap info

- **Proposals to incorporate BF**
 - "SegmentInfo" used for the BF-formatted bitmap;
 - "startIndex", " endIndex" and "chunkmapSize" left blank.

<table>
<thead>
<tr>
<th>Element Name or Attribute Name</th>
<th>Use</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>StatisticsGroup</td>
<td>0...1</td>
<td>Provides statistic data on peer and content.</td>
</tr>
<tr>
<td>Stat</td>
<td>1...N</td>
<td>Groups statistics property data.</td>
</tr>
<tr>
<td>@property</td>
<td>M</td>
<td>The property to be reported property values and elements in Table 5 of [I-D.ietf-ppsp-base-tracker-protocol]</td>
</tr>
<tr>
<td>Representation</td>
<td>0...N</td>
<td>Describes a component of content.</td>
</tr>
<tr>
<td>@id</td>
<td>CM</td>
<td>Unique identifier for this Representation.</td>
</tr>
<tr>
<td>SegmentInfo</td>
<td>1...N</td>
<td>Provides segment information by segment range. The chunkmap can be encoded in Base64 [RFC4648].</td>
</tr>
<tr>
<td>@startIndex</td>
<td>CM</td>
<td>The index of the first media segment in the chunkmap report for this Representation.</td>
</tr>
<tr>
<td>@endIndex</td>
<td>CM</td>
<td>The index of the last media segment in the chunkmap report for this Representation.</td>
</tr>
<tr>
<td>@chunkmapSize</td>
<td>CM</td>
<td>Size of chunkmap reported.</td>
</tr>
</tbody>
</table>

Table 3: Semantics of StatisticsGroup.
Integration with PPSP

• Chunk addressing methods
 – Indicated via HANDSHAKE
 – Used in HAVE/REQUEST/ACK

• Proposals for BF scheme
 – add a defined value (e.g. 5) from "unassigned" value range for the BF-formatted bitmap;
 – use HAVE/REQUEST/ACK message to convey the BF-format array for the overall local chunk bitmap.

 • 16-bit length field
 • BF array
Open issue 1: Configuration

• How do we choose which bitmap scheme to use?
• Option1: system wide configuration
 – Adopted by the current extended tracker protocol
 – Requires one mandatory choice or configuration indication
• Option2: per-swarm configuration
 – Suggested by the new BF draft
 – Requires per-swarm configuration indication scheme to tracker/peer
• Option3: per-peer configuration
 – Adopted by the current peer protocol
 – Requires indication/negotiation via HANDSHAKE
 – Requires translation if different schemes are used by communicating peers
Open issue 1: Configuration (cont’)

• Questions to be settled before decision
 – Do we allow different schemes for Tracker/Peer protocol?
 • Yes? Then we need extensions for configuration indication.
 – Do we allow different schemes for peers in one swarm?
 • Yes? Then we need online translation for peer-peer exchange.
 – Do we allow different schemes for tracker and peer protocol transactions in one swarm, respectively?
 • Yes? Then we need online translation for tracker-peer exchange.

• How do we choose which bitmap scheme to use?
 – Per-swarm configuration for both tracker and peer protocols?
Open issue 2: Peerlist Enhancement

• Shall we extend peerlist to contain bitmaps?
 – Use ContentGroup element in ext CONNECT/FIND request
 – Extend PeerGroup element in ext CONNECT/FIND response

• Pros:
 – Allows for a more precise description of requested chunks
 – Allows for a more efficient neighborhood establishment

• Cons:
 – Seems a bit redundant and Not as accurate as HANDSHAK/HAVE exchange in PPSPP
Next Steps

• Hope to settle existing issues by this week.
• Any further issues or suggestions?
• Ready for WG adoption?
THANK YOU!