Coupled congestion control for RTP media

draft-welzl-rmcat-coupled-cc-02

Michael Welzl, Safiqul Islam, Stein Gjessing

RMCAT @ 88th IETF Meeting
Vancouver, BC, Canada
6 November 2013
Flow State Exchange (FSE)

Hoping to have a draft by the next IETF
Previous version: only passive

- **Goal:** Minimal change to existing CC
 - each time it updates its sending rate (New_CR), the flow calls update (New_CR, New_DR), and gets the new rate
 - Complicates the FSE algorithm and resulting dynamics (e.g. need dampening to avoid overshoot by slowly-reacting flows)

Diagram:

- **FSE**
- **Flow 1**
- **Flow 2**
- **Flow n**

- **Update_rate()**
- **New_Rate**
- **Store Information**
- **Calculate Rates**
Now added: FSE - Active

- Actively initiates communication will all the flows
 - Perhaps harder to use, but simpler algorithm and “nicer” resulting dynamics
Now added: FSE - Active

- Actively initiates communication will all the flows
 - Perhaps harder to use, but simpler algorithm and “nicer” resulting dynamics
Active algorithm

• Every time the congestion controller of a flow determines a new sending rate CC_R, the flow calls UPDATE
 – Updates the sum of all rates, calculates the sending rates for all the flows and distributes them to all registered flows

• Essentially all that is left in this version:
 for all flows i in FG do
 FSE_R(i) = (P(i)*S_CR)/S_P
 send FSE_R(i) to the flow I
 end for

• Designed to be as simple as possible
 – Lacks 1 feature (to be included in the next version): immediately using the capacity freed by application-limited flows
Dynamic behavior: Rate Adaptation Protocol RAP (= rate-based AIMD)

All simulations in this presentation:
Dumbbell topology with bottleneck 10Mb, 1 BDP (13 packets) drop tail queue, RTT = 10 ms, duration 300 seconds
Dynamic behavior: TFRC

With FSE

Without FSE
FSE goals

- **Charter:**
 “Develop a mechanism for identifying shared bottlenecks between groups of flows, and means to flexibly allocate their rates within the aggregate hitting the shared bottleneck.”
 (requirement F34 in *draft-ietf-rtcweb-use-cases-and-requirements-12*)
 - This works perfectly
 - Also did in the previous version

- But: because this avoids competition between flows, we expect reduced queuing delay and loss as a side effect
Average queue length (RAP)
Packet loss ratio (RAP)
What’s going on?

- Queue drains more often without FSE
 - Thought behind expected benefits: coupling emulates *one* flow
 - But, e.g.: 2 flows with rate X each; one flow halves its rate: 2X \Rightarrow 1 ½X
 - When flows synchronize, both halve their rate on congestion, which really halves the aggregate rate: 2X \Rightarrow 1X
Current work

• Trying to fix this (proportionally reduce aggregate rate on congestion, but increase by delta/N)
 – Some issues, e.g. slow start

• Why do we have these problems?
 – Because all papers on RFC2140 etc. did not focus on reducing queuing delay
 – RFC2140 cwnd sharing probably has the same problem
Q&A