IETF RMCAT WG: Video Quality Metrics Discussion for Evaluation Criteria

V. S. Somayazulu
(v.srinivasa.somayazulu@intel.com)

Hassnaa Moustafa
(hassnaa.moustafa@intel.com)
Problem Statement

• *Video Quality Perception* is critical for end-user QoE
 – Topic has been discussed in WG, but no conclusion yet on including this in the requirements or the evaluation metrics for the congestion control algorithms
 – Network/transport related metrics are currently present in the evaluation criteria for Rmcat congestion control algorithms, but do not fully capture the impact on video QoE.

Purpose of this presentation:
1. Provide background on video quality metrics that can help quantify impact of congestion control on the video QoE
2. Stimulate a discussion on adoption of appropriate metrics in evaluation criteria
(High Level) Summary of Evaluation Scenario Discussions in RMCAT WG

• Current (evolving) direction seems to be - Evaluate overall performance, i.e., Video/Audio+ Network Congestion control algorithm

• Couple of ways to include video characteristics:
 1. Use a traffic model that captures statistics of the video source+rate control+shaping
 2. Possibly use uncompressed video sequences with a live encoder (+ prescribed settings) and congestion control algo.

• With either approach, we should define a means of capturing impact on the overall video QoE.
Objective Metrics – Big Picture View

• Background
 – Objective metrics developed to mimic human perception of video, e.g., “look at the received video, and judge how good it looks”
 – Distortions between source and video considered a “black box” and did not affect metric design
 • Good for unbiased evaluation of encoders, etc.
 – Non-reference / Reduced reference a difficult problem in this generic case

• Full-reference vs. non-reference VQM
 – Full reference: compare the measured video with the original uncompressed video
 • PSNR, MS-SSIM, PEVQ
 – Non-reference: analyze the video without a comparison
 • E.g. P1202, etc.
 • ITU-T G.1070
Video Conferencing QoE – ITU-T G.1070

Recommendation ITU-T G.1070 proposes an algorithm that estimates videophone quality for quality of experience (QoE)/quality of service (QoS) planners.
ITU-T G.1070 Video Quality Metric

• Video quality is calculated as:
 \[V_q = 1 + I_{\text{coding}} \exp\left(-\frac{P_{\text{PplV}}}{D_{\text{PplV}}} \right) \]
 where \(I_{\text{coding}} \) represents basic video quality as a function of video bitrate and frame rate

 – \(D_{\text{PplV}} \) represents degree of video quality robustness due to packet loss and \(P_{\text{PplV}} \) is the packet loss rate in %

 – These quantities are calculated using a set of fixed parameters dependent on codec type, video format, key frame interval, and video display size
 • G.1070 provides provisional values for H.264, VGA format, 1 second key frame interval and 9.2 inch display, coded bit rates between 400 kbps – 2 Mbps, packet loss rates < 5% and frame rates from 5-25 fps.
 • Parameter values for modeling any other set of conditions would need to be derived from video quality evaluation

• Further enhancements to the basic model for different codecs, display formats, content dependency, etc. have been explored, e.g.:
Considerations on use of ITU-T G.1070

• Use evaluation scenario(s) to run simulation of target congestion avoidance algorithm with a given test video sequence (trace file)
 – Collect trace of packet arrival times, packet losses, at sender and receiver
 – Segment data into short intervals of time (e.g. 5 seconds?)
 – For each segment i:
 • Calculate video bitrate sent, assume fixed frame rate
 • Calculate average packet loss rate at receiver
 • Calculate per-segment video quality $V_{q,i}$
 – Calculate over the entire video sequence:
 • Mean and variance of the set of $\{V_{q,i}\}$
 • Higher mean and lower variance \rightarrow better overall video quality
Discussion

• Propose to add video quality evaluation metrics for consideration by Rmcat WG. Desirable features of the metrics should include:
 – Good correlation with subjective video quality perception
 – Combine different parameters to provide an integrated look at video QoE impact
 – Relatively simple to calculate based on data from network simulations
 – Ideally, based on published standards

• Subjective quality evaluation is hard to organize and execute, especially in a contribution evaluation phase

• Common objective evaluation metrics of video quality
 – Easier to use in proposal evaluations,
 – Full-reference & Non-reference: latter may be more suited for RMCAT evaluation

• ITU-T Rec.G.1070 based NR VQ metrics designed for video conferencing applications
 – Additionally, this doesn’t require compressed bitstream inspection, etc.: algorithm inputs are high level, e.g. throughput, packet loss rate, etc.

• Soliciting feedback from group on defining consideration for video quality metrics as part of evaluation criteria for congestion control algorithms? → Current phase

• For further consideration: Could VQ be exploited by congestion control algorithms?
 – Potential for incorporating video quality information into RTCP XRBLOCK reports?
 → (Later phase)
Annex
Background

• Rmcat WG is dealing with congestion control for Internet data considering interactive point-to-point real-time multimedia services over RTP

• Requirements for congestion control algorithms are defined considering
 – Low delay
 – Semi-Reliable data delivery
 – Fairness to other flows
 – Adaptation to network conditions

• Metrics for congestion control are defined to be
 – Delay, throughput, minimizing transmission rates oscillations, reactivity to transient events and packet losses and discards

• Evaluation Criteria for congestion control algorithms have been defined considering
 – Avoiding Congestion Collapse
 – Stability
 – Media Traffic
 – Startup Behavior
 – Diverse Environments
 – Varying Path Characteristics
 – Reacting to Transient Events or Interruptions
 – Fairness with Similar Cross Traffic
 – Impact on Cross Traffic
 – Extensions to RTP/RTCP
Video Quality Variation w/ Network Conditions Variation

PSNR loss for different network bandwidth limitations

PSNR loss for different packet loss rate

Impact of Throughput Variation on Video Conferencing Applications

Video Quality Evaluation: Introduction

- Quality of Experience
 - The overall experience the consumer has when accessing and using provided video services

- Quantifying Video Quality
 - Mean Opinion Score (MOS)
 - Subjectively done: recruit a group of people to watch a set of video clips and give a numeric score to each clip
 - Automatically done: design algorithms to estimate a MOS based on characteristics of media stream, network, device, etc.

- Video Quality Issues
 - Video creation, video encoding/transcoding, video transmission, video display
Video Quality Issues

- Video blockiness (encoding)
- Video blurriness (capturing/encoding)
- Video losses (transmission)
- Video jerkiness (transmission/encoding/display)
- Video freezing/rebuffering (transmission)
- A/V sync problem (transmission/encoding)

Blockiness vs. blurriness
PSNR (Peak Signal-to-Noise Ratio)

• Most commonly used metric to measure the quality of reconstruction of lossy compression codecs

\[
PSNR = 10 \cdot \log_{10} \left(\frac{255^2}{MSE} \right)
\]

– Typically values between 30~50 dB, higher is better
MS-SSIM

$$\text{MSSSIM}(x,y) = [l_{\downarrow M}(x,y)]^{\alpha \downarrow M} \prod_{j=1}^{M}[c_{\downarrow j}(x,y)]^{\beta \downarrow j} [s_{\downarrow j}(x,y)]^{\gamma \downarrow j}$$

Luminance $l(x,y)$
Contrast $c(x,y)$
Structure $s(x,y)$

Typical values between 0.8~1, higher is better
Output PEVQ MOS ranging from 1 (bad)~5 (excellent)
Distortion Indicators: Delay, Brightness, Contrast, PSNR, Jerkiness, Blur, Blockiness, Frame skips and freezes, Temporal Activity and spatial complexity
ITU-T SG12 No-Reference Objective Standards

- Consented or Approved documents shown in **black**
- Targeted Applications:
 - IPTV services; non-adaptive streaming; non-interactive
 - P.1201.x – multimedia QoE; P.1202.x – video QoE
- Targeted protocols: non-HTTP (RTP, TS-on UDP, etc.)

```
Packet Headers
P.1201.1 (lbr*)
P.1201.2 (hbr*)
P.1202.1 (lbr*)
P.1202.2 mode 1 (hbr*)
P.1202.2 mode 2 (hbr*)
```

```
Bit Stream
J.bitvqm, J.mm-noref, J.noref, VQEG-JEG Hybrid Project
```

```
Decoded Video

* lbr- low bit rate
  hbr- high bit rate
```
P.120x.x Video Impairment Model

• P.1202 Approach
 – Design a metric for evaluating quality in specific instance; i.e., IPTV services
 – This significantly constrains the problem, and should make the solution much more feasible
 • Known video encoder; encoder output available
 • Known channel; impairment pattern available

• Four main video distortions accounted for
 – Compression Artifacts
 • Due to lossy encoding
 – Slicing Artifacts
 • Due to Packet Loss Concealment (PLC) of lost packets
 – Freezing Artifacts
 • Due to PLC replacing erroneous frames with last good frame (“freezing with skipping”)
 – Rebuffering Artifacts
 • Due to PLC repeating a frame until frame reception recommences (“freezing without skipping / spinning wheel”)

P.1202 (ex. P.NBAMS)

• Two application areas:
 - P.1202.1, "lower resolution mode":
 – Same as P1201.1:
 • i.e., QCIF-QVGA-HVGA, mostly for mobile TV and Streaming
 - P.1202.2, "higher resolution mode":
 – Linear broadcast TV & Video on-demand:
 • Still under Study
P.1202 (ex. P.NBAMS)

- Packet Headers and bitstream input only
- Not intended for codec evaluation
- Not intended for streams with significant rate adaptation
- Video Pearson correlation of 0.918 for P.1202.1 (982 samples)

<table>
<thead>
<tr>
<th>Validated Test Factors</th>
<th>Recommendation</th>
<th>P.1202.1</th>
<th>P.1202.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio BR</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Video BR</td>
<td>0.05 – 6 Mbps</td>
<td>Under study</td>
<td></td>
</tr>
<tr>
<td>Packet loss</td>
<td>✓</td>
<td>Under study</td>
<td></td>
</tr>
<tr>
<td>Re-buffering</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Video Resolution</td>
<td>HVGA, QVGA, QCIF</td>
<td>Under study</td>
<td></td>
</tr>
<tr>
<td>Video encoding</td>
<td>H.264/AVC baseline</td>
<td>Under study</td>
<td></td>
</tr>
<tr>
<td>FR’s and key frame rates</td>
<td>Frame rate 5-30 Hz GOP lengths 2-10s</td>
<td>Under study</td>
<td></td>
</tr>
<tr>
<td>Protocol</td>
<td>UDP-based</td>
<td>Under study</td>
<td></td>
</tr>
<tr>
<td>Protocols not tested*</td>
<td>TCP-based</td>
<td>Under study</td>
<td></td>
</tr>
</tbody>
</table>

* (can be used, but may not be reliable)