
Data Channels

Randell Jesup (randell@jesup.org)
Salvatore Loreto (salvatore.loreto@ericsson.com)

Michael Tüxen (tuexen@fh-muenster.de)

mailto:salvatore.loreto@ericsson.com
mailto:salvatore.loreto@ericsson.com
mailto:salvatore.loreto@ericsson.com

Outline

• Recent changes
– draft-ietf-rtcweb-data-channel-06
– draft-ietf-rtcweb-data-protocol-01

• Open Issues

2

Changes in the Latest Revision of the Data
Channel IDs

• draft-ietf-rtcweb-data-channel-06 covers
requirements, use-cases, the data transfer and the
closing of data channels. The setting up of data
channels is out of scope of this document.

• draft-ietf-rtcweb-data-protocol-01 focuses on the in-
band negotiation of symmetric data channels (two
way handshake)

• The results of the discussion at the last IETF are
reflected.

3

Open Issue No 1:
DTLS Overhead

• Issue
– The DTLS overhead depends on the Cipher Suite.

Therefore taking the maximum of currently
defined cipher suites is not future proof.

• Proposed Resolution
– Just specify the IP Layer MTU

4

Open Issue No 2:
Large Messages Block Other Channels

• Issue
– The sending of a large message on a data channel blocks the sending

of messages on other data channels.

• Proposed Resolution
– All implementation must support the PPID based fragmentation and

reassembly method for ordered reliable data channels. For other data
channels the message size is limited to avoid the issue.

– When SCTP level interleaving (as specified in draft-stewart-tsvwg-
sctp-ndata) is available, it is used and the length restriction for
unordered or unreliable data channels is removed.

5

Open Issues No 3:
Message Size Limitations

• Issue
– What are message size limitations?
– For interoperability one needs a minimal upper limit.

• Proposed Resolution
– Message size support for a minimum of 100 MB

– WebSockets has a limit of ~2^71 or so, but removed any
limit and said implementations can impose maximums to
avoid DoS attacks (section 10.4)

– If SCTP level interleaving is not supported, the message size
limit of unordered or unreliable data channels is 10 KB

6

Open Issues No 4:
Usage of the Nagle Algorithm

• Issue
– The Nagle algorithm (which is enabled by default

in SCTP) tries to reduce the number of packets by
delaying small packets.

– This does result in performance degradation, but
not in interoperability problems.

• Proposed Solution
– Disable Nagle Algorithm

7

Open Issues No 5:
Initial Number of Streams

• Issue
– When setting up an SCTP association, the initial number of

outgoing streams (between 1 and 65535) is negotiated.
During the lifetime of the association, this number can be
increased (up to 65536 streams).

– Implementing the increase of streams (above the SCTP
stack) adds some complexity.

• Proposed Solution
– No change: The complexity added is almost all needed

anyways to handle blocking Opens while waiting for
association init, and reporting errors if for any reason more
channels aren't available.

8

Open Issues No 6:
Out of Band Negotiation

• Issue
– It is not clear whether the same stream ID is used in both directions.
– It is not clear whether the odd/even role applies.
– It is not clear what the impact with in-band negotiation is.
– JS libraries might use DataChannels, either in-band or out-of-band

• Proposed Solution
– Clarify that the same stream ID is used in both directions.
– The even/odd rule does not apply to out-of-band negotiated channels
– Collisions between out-of-band-negotiated channels and in-band negotiated

channels result in errors when detected
– In-band and out-of-band negotiation must be able to be mixed to support

applications using external JS libraries without needing a bunch of extra
interfaces

9

Open Issues No 6:
Out of Band Negotiation (cont)

• In the JS API, you should set up your side of the channel
before sending the configuration out-of-band for the other
side to install

• For adding out-of-band channels after initial O/A, collisions
with in-band allocation MUST be avoided. This can be done
by:

● Not using in-band (including libraries)
● Verifying that you're using the correct Oddness and an

unused channel (requires tracking all in-use channels,
including libraries)

● Per the JS API, asking the stack/protocol for an unused
channel of the correct Oddness

10

	Slide 1
	Outline
	Changes in the Latest Revision of the Data Channel IDs
	Open Issue No 1: DTLS Overhead
	Open Issue No 2: Large Messages Block Other Channels
	Open Issues No 3: Message Size Limitations
	Open Issues No 4: Usage of the Nagle Algorithm
	Open Issues No 5: Initial Number of Streams
	Open Issues No 6: Out of Band Negotiation
	Slide 10

