

SPRING Use Case:

Performance Engineered LSPs.

(BoF Recap) What's the problem we're trying to address?

- In IP/MPLS networks, we have a concept of one "base" topology which is the SPT.
 - One set of logic applied to choose IGP costs used to route all services within this topology.
- **Problem for a core network supporting multiple services:** Not all services have the same logic as to the constraints for their routing through the infrastructure.

Co-routing service placement based on consideration of other services within the network.

Pinned paths where services are constrained based on underlying path resources.

- How do we meet the requirement for such constraints?
 - Transport networks have generally provided such constrained paths.
 - More applications requiring performance guarantees.
 - For all traffic (e.g., Broadcast).
 - A subset (e.g., voice within a multi-service VPN).

Problem: Provide means to introduce routing constraints which diverge from the SPT on a per-service or perflow basis, utilising the existing underlying IP/MPLS network infrastructure.

Head-end Based Calculation of Segment Stack.

- Head-end based computation as per RSVP-TE ERO computation to determine SID stack to be used.
- Allows explicit path to be specified where IGP visibility exists.
- Such services (e.g., affinity, latency-based) did not impact admission control metrics in RSVP-TE: state reduction.

Centralised Computation of Segment Stack.

- Centralised computation required for a subset of performance demands e.g., bi-directional co-routed, disjoint service paths.
- Further requirement introduced by multi-area IGP no visibility of segments.

- Architecture using PCE to calculate SID stacks to provide such performance constraints (improving visibility).
- Requires some IETF stitching into overall architecture:
 - Path computation (PCEP, stateful PCE).
 - IGP Discovery (OSPF/ISIS extensions or BGP-LS).
 - Liveliness detection (MPLS-TP OAM?)
 - Protection.

Co-routed service

Disjoint service pair

Dataplane Considerations and Protection.

Adj-SID supporting parallel paths (take advantage of ECMP)

SIDs signalling protection behaviours

- Services have differing requirements for protection per-application:
 - No protection –non-revertive SIDs.
 - IP/MPLS FRR –
 {vanilla,remote,directed}-LFA.
 - Application-layer protection utilising path-protection (could be computed by PCE).
- Survivability of solution increased by PCE due to path recomputation – benefit of online vs. offline computation.

Use Case/Architecture aims to describe a mechanism to create LSPs within an **MPLS LSR infrastructure** which:

- Are routed away from the SPT based on performance constraints (affinity, latency, SRLG etc.) or coupling with other LSPs within the network (e.g., for diversity or bidirectionality).
- Provide adequate scale to support per-service or perflow constraints.
- Are routed according to distributed CSPF or centrally by a PCE based on service requirements.

Aiming to augment the capabilities of the existing IP/MPLS packet layer to support new service demands.

