Segment Routing Use Cases

- Generic SR Use Cases
 - draft-filsfils-rtgwg-segment-routing-use-cases-02.txt
- SR/LDP Interoperability
 - draft-filsfils-spring-segment-routing-ldp-interop-00.txt
- OAM
 - draft-geib-spring-oam-usecase-00.txt
- To be published:
 - FRR: draft-francois-segment-routing-resiliency-use-cases
 - Service Chaining
 - SR for IPv6
- Many authors of different drafts
 - and even more contributors...

C. Filsfils S. Previdi Cisco Systems, Inc.

> P.Francois IMDEA Networks

B. Decraene S. Litkowski Orange

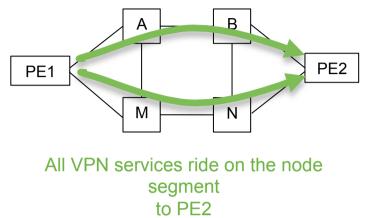
M. Horneffer R. Geib Deutsche Telekom

I. Milojevic Telekom Srbija

R. Shakir British Telecom

> S. Ytti TDC Oy

W. Henderickx Alcatel-Lucent


> J. Tantsura S.Kini Ericsson

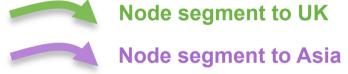
E. Crabbe Google, Inc.

Segment Routing Use Cases

Use Cases	Section
IGP-based MPLS Tunneling	2
Fast Reroute	3
Disjointness in dual-plane networks	4.1.1
CoS-based Traffic Engineering	4.1.2
Egress Peering Traffic Engineering	4.1.3
Deterministic non-ECMP Path	4.1.4
Load-balancing among non-parallel links	4.1.5
Traffic engineering with Admission Control Capacity Planning SDN /SR use-case	4.2 4.2.1 4.2.2

Simple and Efficient Transport of MPLS services

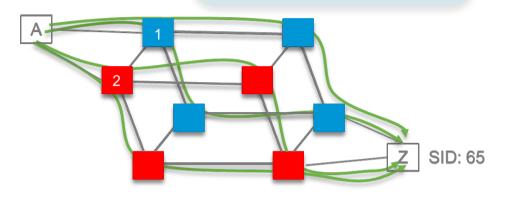
- Efficient packet networks leverage ecmp-aware shortest-path
 - node segment
- Simplification
 - no complex LDP/ISIS synchronization to troubleshoot
 - one less protocol to operate
- IPv6 over MPLS can be deployed directly with SR
 - no need for LDPv6


CoS-based TE

- Japan to UK
 - data: via US, cheap capacity
 - voip: via Asia, low latency
- CoS-based TE with SR
 - IGP metric set such as
 - > Japan to Asia: via Asia
 - > Japan to UK: via US
 - > Asia to UK: via Europe
 - Anycast segment "Asia" advertised by Asia core routers
- Tokyo CoS-based policy
 - Data and UK: push the node segment to UK

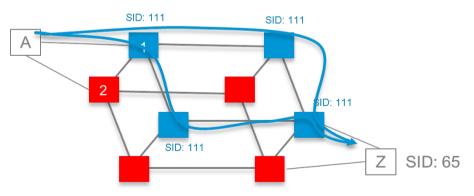
→ ECMP-aware shortest-path to UK

- VoIP and UK: push the anycast node to Asia, push UK
 - ECMP-aware shortest-path to Asia, followed by ECMP-aware shortest-path to UK

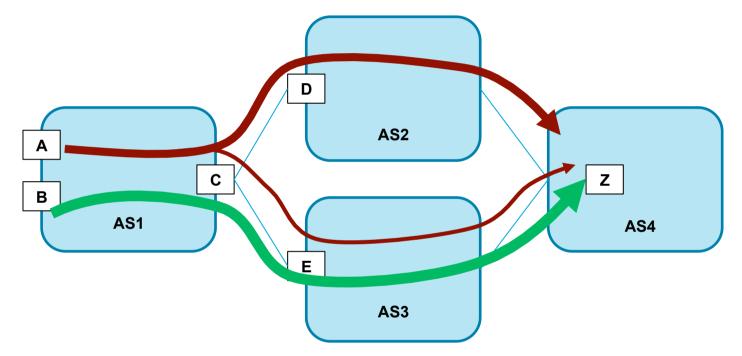

No TE tunnel enumeration, no TE state in the core

4

Simple Disjointness

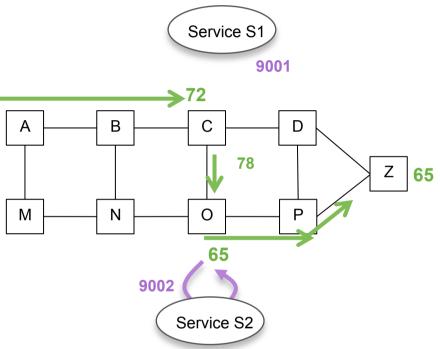

SR avoids state in the core

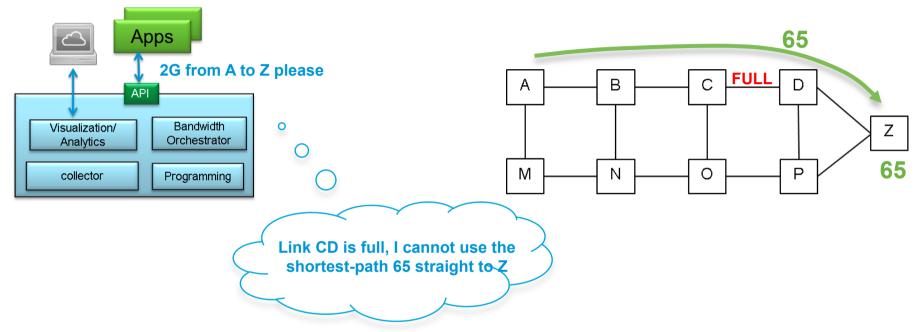
SR avoids enumerating RSVP-TE tunnels for each ECMP paths



• A sends traffic with [65] Classic ecmp "a la IP"

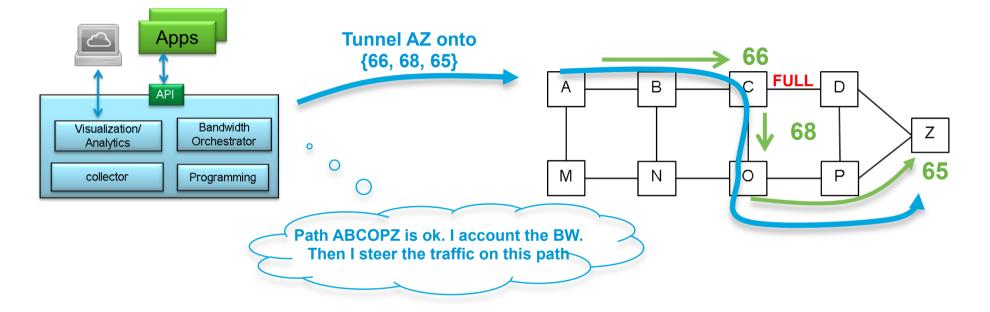
• A sends traffic with [111, 65] Packet gets attracted in blue plane and then uses classic ecmp "a la IP"


Engineer traffic towards egress peers

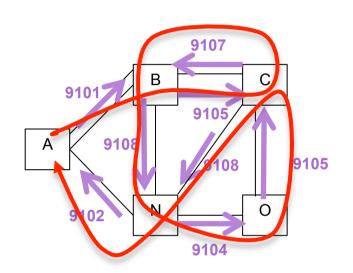

- Ingress border routers control how their traffic is balanced between peers
 - Overriding BGP decision at egress border

Local Service Segment

- 72, 78, 65: global segments representing the shortest-path respectively to C, O and Z
- 9001: local segment to C representing a local service S1
- 9002: local segment to O representing a local service S2
- Ingress node A enforces a source route of forwarding and service instructions on flow F by appending the SR list {72, 9001, 78, 9002, 65} on its packets
- 9001 and 9002 represent local services



Application controls – network delivers


- The network is simple, highly programmable and responsive to rapid changes
 - perfect support for centralized optimization efficiency, if required

Application controls – network delivers

• The network is simple, highly programmable and responsive to rapid changes

OAM

9101
9105
9107
9108
9104
9105
9108
9102

Google

Localizing packet loss

In a large complex network

Nicolas Guilbaud <u>nguilbaud@google.com</u> Ross Cartlidge <u>rossc@google.com</u>

Nanog57, Feb 2013