STIR Credentials

IETF 88 (Vancouver)
Wednesday Session
Jon & Hadriel
Requirements Discussion

• Trying to identify some of the primary design decisions
• Credentials will require public and private keys
 – How we provision private keys and publish public keys
• Differences between proposed solutions can be elusive
• Let’s level-set and get on the same page
Enrollment

• How do signers get credentials?
 – Delegation from above?
 • May be from regulators, or from other number holders
 • Might be thousand blocks, or individual numbers
 – Proof of possession?
 • Per Whatsapp, VIPR, etc.
 • Weaker assertion, but still useful enough?

• Credential strength a critical dimension of this
 – Is there any usability story for weak credentials?
 – “Golden root” versus “silver sprouts”
 • National-level delegation roots
Req: Delegation

• Much discussed on the list
 – Premise: anyone with a credential for a number may delegate to someone below them
 • Non-exclusive, may delegate to multiple parties
 – Delegation may be all of the delegators authority, or only part of it
 • If I have a thousand block, I can give you 999 numbers or just 1

• Temporary delegation
 – One-time use
 – Doctor’s office case
 – Call centers
 – Need accountability for temporary delegation
Req: Credentials for Ranges

• Some entities will have authority over multiple numbers
 – Administrative domains could control millions of numbers
 • In non-continuous ranges
 – Includes service providers, enterprises, resellers, etc.
 – Some entities will only have one number

• Ideally, a service provider should not have to have one credential per number
 – Expressing those ranges is an important decision here
Expiry, Revocation and Rollover

• All credentials will have a lifetime
 – Caching expressed as a TTL or similar lifetime indicator
 – Numbers change owners, get ported, transfer normally

• Sometimes keys will be compromised before their expiry
 – Some sort of real-time checking required
 • DNS could set TTLs very low
 • OCSP checks, but with some overhead
 • Are these two forms of overhead equal?
Signer Provisioning

• How do signers acquire and manage private keys?
 – Self-generated and provisioned at the authority
 – Generated by the authority and downloaded to devices

• Intermediaries and enterprises
 – Provision keys for number blocks, sign on behalf of calls/texts passing by
 – May possess many keys

• End user terminals
 – Built into the device?
 – Downloaded from the authority?

• In both cases, may need keys for the same authority range provisioned in multiple places
Verifier Credential Acquisition

• Different methods of acquiring credentials
 – Push (credential arrives with the request)
 • Caching unlikely
 – Pull (verifier acquires credential on receipt of request)
 • Either dereferencing a URI or creating a fetch based on the originating number
 • With caching
 – Prefetch (verifier gets top 500 keys) with pull
 • Maybe pub/sub service
 – Others? Probably
Which credentials do verifiers need?

• Can we uniquely identify the needed credential based on TN alone?
 – Depends on how many authorities there are

• How many authorities and delegates per number?
 – Some kind of hint needed to disambiguate
 • Identity-Info
 • CIDER “public key index value”
Public or Confidential Database?

• How much information are we willing to make public?
 – Will we reveal the carrier of record?
 • Okay when a call is received to know the originating carrier?
 – Receiving user vs. receiving carrier may be different
 • More seriously, can an attacker mine a public database to reveal who owns all numbers?
 – Will we introduce VIPR-like privacy leaks

• If we make the database where verifiers get credentials confidential, how limiting will that prove?
 – How important is endpoint verification?
 • Does trust become transitive if endpoints rely on intermediary verifiers?