STIR Credentials

IETF 88 (Vancouver)
Wednesday Session
Jon & Hadriel

Requirements Discussion

Trying to identify some of the primary design

decisions

Credentials will require public and private keys

— How we provision private keys and publish public
keys

Differences between proposed solutions can
oe elusive

_et’s level-set and get on the same page

Enrollment

* How do signers get credentials?

— Delegation from above?
* May be from regulators, or from other number holders
* Might be thousand blocks, or individual numbers

— Proof of possession?

* Per Whatsapp, VIPR, etc.
* Weaker assertion, but still useful enough?

* Credential strength a critical dimension of this
— |s there any usability story for weak credentials?

— “Golden root” versus “silver sprouts”
* National-level delegation roots

Req: Delegation

e Much discussed on the list

— Premise: anyone with a credential for a number may
delegate to someone below them

* Non-exclusive, may delegate to multiple parties

— Delegation may be all of the delegators authority, or only
part of it
* If | have a thousand block, | can give you 999 numbers or just 1

* Temporary delegation
— One-time use
— Doctor’s office case
— Call centers
— Need accountability for temporary delegation

Req: Credentials for Ranges

* Some entities will have authority over multiple
numbers

— Administrative domains could control millions of
numbers

* |[n non-continuous ranges
— Includes service providers, enterprises, resellers, etc.
— Some entities will only have one number

* |deally, a service provider should not have to
have one credential per number

— Expressing those ranges is an important decision here

Expiry, Revocation and Rollover

e All credentials will have a lifetime

— Caching expressed as a TTL or similar lifetime
indicator

— Numbers change owners, get ported, transfer
normally

 Sometimes keys will be compromised before
their expiry
— Some sort of real-time checking required

* DNS could set TTLs very low
* OCSP checks, but with some overhead
* Are these two forms of overhead equal?

Signer Provisioning

How do signers acquire and manage private keys?
— Self-generated and provisioned at the authority
— Generated by the authority and downloaded to devices

Intermediaries and enterprises

— Provision keys for number blocks, sign on behalf of calls/
texts passing by

— May possess many keys

End user terminals

— Built into the device?

— Downloaded from the authority?

In both cases, may need keys for the same authority
range provisioned in multiple places

Verifier Credential Acquisition

e Different methods of acquiring credentials

— Push (credential arrives with the request)
* Caching unlikely

— Pull (verifier acquires credential on receipt of request)

e Either dereferencing a URI or creating a fetch based on the
originating number

* With caching

— Prefetch (verifier gets top 500 keys) with pull
* Maybe pub/sub service

— Others? Probably

Which credentials do verifiers need?

* Can we uniquely identify the needed
credential based on TN alone?

— Depends on how many authorities there are
* How many authorities and delegates per
number?

— Some kind of hint needed to disambiguate
* |dentity-Info
* CIDER “public key index value”

Public or Confidential Database?

* How much information are we willing to make public?

— Will we reveal the carrier of record?

* Okay when a call is received to know the originating carrier?
— Receiving user vs. receiving carrier may be different

* More seriously, can an attacker mine a public database to reveal
who owns all numbers?

— Will we introduce VIPR-like privacy leaks

* |f we make the database where verifiers get
credentials confidential, how limiting will that prove?

— How important is endpoint verification?

* Does trust become transitive if endpoints rely on intermediary
verifiers?

