STIR Credentials

IETF 88 (Vancouver)
Wednesday Session
Jon & Hadriel

Requirements Discussion

- Trying to identify some of the primary design decisions
- Credentials will require public and private keys
 - How we provision private keys and publish public keys
- Differences between proposed solutions can be elusive
- Let's level-set and get on the same page

Enrollment

- How do signers get credentials?
 - Delegation from above?
 - May be from regulators, or from other number holders
 - Might be thousand blocks, or individual numbers
 - Proof of possession?
 - Per Whatsapp, VIPR, etc.
 - Weaker assertion, but still useful enough?
- Credential strength a critical dimension of this
 - Is there any usability story for weak credentials?
 - "Golden root" versus "silver sprouts"
 - National-level delegation roots

Req: Delegation

- Much discussed on the list
 - Premise: anyone with a credential for a number may delegate to someone below them
 - Non-exclusive, may delegate to multiple parties
 - Delegation may be all of the delegators authority, or only part of it
 - If I have a thousand block, I can give you 999 numbers or just 1
- Temporary delegation
 - One-time use
 - Doctor's office case
 - Call centers
 - Need accountability for temporary delegation

Req: Credentials for Ranges

- Some entities will have authority over multiple numbers
 - Administrative domains could control millions of numbers
 - In non-continuous ranges
 - Includes service providers, enterprises, resellers, etc.
 - Some entities will only have one number
- Ideally, a service provider should not have to have one credential per number
 - Expressing those ranges is an important decision here

Expiry, Revocation and Rollover

- All credentials will have a lifetime
 - Caching expressed as a TTL or similar lifetime indicator
 - Numbers change owners, get ported, transfer normally
- Sometimes keys will be compromised before their expiry
 - Some sort of real-time checking required
 - DNS could set TTLs very low
 - OCSP checks, but with some overhead
 - Are these two forms of overhead equal?

Signer Provisioning

- How do signers acquire and manage private keys?
 - Self-generated and provisioned at the authority
 - Generated by the authority and downloaded to devices
- Intermediaries and enterprises
 - Provision keys for number blocks, sign on behalf of calls/ texts passing by
 - May possess many keys
- End user terminals
 - Built into the device?
 - Downloaded from the authority?
- In both cases, may need keys for the same authority range provisioned in multiple places

Verifier Credential Acquisition

- Different methods of acquiring credentials
 - Push (credential arrives with the request)
 - Caching unlikely
 - Pull (verifier acquires credential on receipt of request)
 - Either dereferencing a URI or creating a fetch based on the originating number
 - With caching
 - Prefetch (verifier gets top 500 keys) with pull
 - Maybe pub/sub service
 - Others? Probably

Which credentials do verifiers need?

- Can we uniquely identify the needed credential based on TN alone?
 - Depends on how many authorities there are
- How many authorities and delegates per number?
 - Some kind of hint needed to disambiguate
 - Identity-Info
 - CIDER "public key index value"

Public or Confidential Database?

- How much information are we willing to make public?
 - Will we reveal the carrier of record?
 - Okay when a call is received to know the originating carrier?
 - Receiving user vs. receiving carrier may be different
 - More seriously, can an attacker mine a public database to reveal who owns all numbers?
 - Will we introduce VIPR-like privacy leaks
- If we make the database where verifiers get credentials confidential, how limiting will that prove?
 - How important is endpoint verification?
 - Does trust become transitive if endpoints rely on intermediary verifiers?