Background

Tom Talpey
Agenda

• Introduction/Background – 20 min
 • Tom Talpey
• iWARP – 15 min
 • Brian Hausauer
• RoCE – 15 min
 • Diego Crupnicoff
• Data Center Ethernet – 10 min
 • Pat Thaler
• Discussion – 1 hr
 • All
Goals

• Assess state of RDMA
• Interest in continuing IETF RDMA work
• Explore cross-standards-org liaison(s)
• Discussion of possible future WG activity
What is RDMA

1. Secure and efficient sharing and transfer of memory directly to/from network
2. Messaging paradigm for low-latency

• Protocols:
 • “iWARP” MPA/TCP|SCTP – DDP – RDMAP
 • Typically Ethernet 10-40Gb
 • InfiniBand (InfiniBand Trade Association (IBTA))
 • Specialized link layer 40-56Gb, moving higher
 • RoCE (also IBTA)
 • RDMA over Converged Ethernet (InfiniBand messages)
 • Datacenter Ethernet 10-40Gb

• All currently shipping from multiple vendors and supported by major operating systems
Previous IETF Work

- RDMA Consortium 2002-2003
 - DDP, RDMAP, MPA, iSER/DA
 - Also: Verbs (RDMA pseudo-API) and SDP (Sockets Direct) not adopted by IETF
- RDDP 2002-2007
- IPS 2001-2007
 - RFC5046 iSER, 5047 Datamover (2006)
- STORM 2009-present
 - RFC6581 MPA peer connect (2011)
 - RFC6580 RDDP Registries (2012)
 - TBD RDMAP extensions, iSER (active)
- NFSv4 (in perpetuity 😊)
 - RFC5532 NFS/RDMA problem statement (2008)
 - RFC5666-5667 NFS/RDMA protocol (2008)
Upper Layers using RDMA

• Storage
 • NFSv2/v3/v4
 • iSER
 • SMB3 (Microsoft)
 • SRP (SCSI RDMA Protocol) (ANSI T10)

• “High Performance Computing”
 • MPI
 • Financial
 • Scientific/HPC

• Virtualization
 • E.g. migration, backup/cloning

• Differing fabric use and requirements
 • Storage: send/receive/read/write: efficiency, IOPS
 • HPC: +atomics/immediate: latency
 • Others: +bulk transfer: bandwidth
Lower Layers Used by RDMA

- Ethernet
- Data Center Ethernet
 - DCB, PFC, QCN
- InfiniBand
- Other
RDMA Trends

- Hardware (NIC device) offload
- TCP/iWARP
 - Perceived device complexity
 - Routable, scalable on standard networks
- RoCE
 - Perceived device simplicity/efficiency, complexity in network
 - Not routable, help!
- Scaleout
 - Datacenter, cloud deployment
- Congestion management
- Workloads (goals)
 - Storage! (IOPS)
 - Low-latency messaging (scientific, clusters, etc)
 - Network shared memory (latency, signaling, active/active)
 - Bulk transfer (bandwidth)
Virtualization

• Increasing use of RDMA in virtualized environments
 • Storage access (small IOPS at low overhead)
 • Migration (memory-to-memory at high bandwidth and low overhead)
 • Storage management (drive cloning, transfer)
 • RDMA access directly from guest VMs

• Encapsulation typical
 • Implies IP addressing and endpoint management
 • Device virtualization (e.g. SRIOV)

• Standards/BCPs for RDMA encapsulation needed?
 • Protocol implications?
Other related work

• Verbs?
• Richer messaging interface?
• Encapsulation requirements and interface?
• Transport layer e.g. congestion/slowstart?
• Related external standards organizations
 • IBTA
 • ANSI T10
 • IEEE
 • Other
• Related Working Groups
 • NFSv4
 • NVO3?
 • TSV/TCPM