Increasing interest in iWARP

- Public/private cloud uses:
 - File and Block Storage
 - Virtual Machine migration
 - Low-latency messaging middleware
 - HPC-as-a-Service

- Key iWARP value propositions for these usage cases:
 - Engineered for best-effort Ethernet
 - Neither lossless Ethernet nor DCB required
 - Natively Routable
 - Multi-pathing supported at Layer 3 (as well as Layer 2)
 - Reliable and proven TCP Transport
 - Mature and efficient retransmission algorithms
 - Dynamic and verified congestion algorithms
Driving iWARP Extensions into the iWARP specification
- Focused on eliminating the application-visible differences between iWARP and InfiniBand

draft-ietf-storm-rdmap-ext-08
- Authors from multiple iWARP providers
- Adds missing iWARP operations:
 - Atomic Operations
 - RDMA Write with Immediate Data
- Last Call closed on Oct 15, 2013
- Ready to submission to STORM AD and IESG for initial request for publication as an RFC

Next phase ready for discussion
iWARP currently leverages:
 - TCP
 - Reliable transport and congestion management
 - Explicit Congestion Notification
 - Inherited from TCP/IP layers

iWARP will naturally adopt/use:
 - Tunneling/Network Overlays
 - iWARP works with (but does not require) existing tunnel protocols (ie Generic Routing Encapsulation) and NVO3 technology investigations

Connectionless messaging to complement iWARP RDMA
 - Typically realized with unreliable datagrams (unicast and multicast)
 - Infiniband has Unreliable Datagram (UD)
 - UDP may be used in place of UD for Ethernet implementations
 - No new wire protocol standards required
Future iWARP Expansions

- Remaining InfiniBand/iWARP differences
 - RDMA Read semantics
 - Send with Immediate Operations
 - New draft coming soon

- Storage
 - Acknowledged Writes
 - Reliable multicast

- HPCaaS
 - Address known RDMA resource scaling deficiencies when used in very high core count clusters