TRILL Resilient Distribution Trees

draft-zhang-trill-resilient-trees-04.txt Mingui, Tissa, Jana, Ayan, Anoop, Donald

When a distribution tree fails

- When a link on distribution tree (DT) fails, it is recovered through campus wide reconvergence.
- It may lead to considerable long disruption to ongoing multicast traffic.
- Protection mechanisms should be designed to mitigate this disruption.

Multicast FRR using backup DT

- TRILL switches can calculate multiple trees.
- Akin to the IGP multicast Fast ReRouting (FRR) mechanisms
 - TRILL can install a backup DT in advance.
 - If a link on the primary DT fails, use the backup DT directly without DT calculation and installation.

Usage of Affinity Sub-TLV

- RFC6326bis defines Affinity Sub-TLV. It explicitly assigns a link on a DT.
 - It is called "Affinity Link" in this doc
- The Affinity Link is not necessarily on the shortest path trees.
- It's utilized to manipulate the backup DT calculation.

DT calculation with the Affinity Link

- Suppose the Affinity Link is RB4->RB5, tree root is RB1
 - {Nickname=RB5, Num of Trees=1, Tree-num of roots=RB1}
- Delete all incoming links of RB5 except the affinity link RB4->RB5
- Compute the DT according to SPF calculation on the sub topology
- Link RB4->RB5 will surely appear on the DT

Protecting a link on primary DT

 Link RB1-RB2 on the primary tree is protected by the backup tree.

Maximally edge disjoint DTs

 The more Affinity Links are intentionally assigned, the more links of the backup DT can be pinpointed. Maximally disjoint primary & backup DTs can be set up in this way.

o red and blue edges are disjoint.

Backup DT pruning

Global 1:1 protection

- Suppose RB7 is the multicast source while RB9 and RB10 are the receivers.
- When RB1-RB5 fails, RB7 will switch the multicast traffic from tree1 to tree2.

Global 1+1 protection

- RB7 replicates multicast packets and send them along both trees. Receivers RB9 & RB10 accept only one copy from the primary tree using Reverse Path Forwarding Check (RPFC).
- When RB1-RB5 fails, RB9&RB10 change their RPFC and accept the other copy from the backup tree.

Local protection

 When RB1-RB5 fails, RB1 locally switches to the backup tree.

Thanks!