Saratoga update
&
Thoughts on the evolution of IETF transport protocols

Wes Eddy
wes@mti-systems.com

TSVAREA – Evolution of IETF Transport Protocols
IETF 88 – Vancouver, November 2013
draft-wood-tsvwg-saratoga

 - Initial -00 version of draft was May, 2007.
 - Related supporting drafts:
 - draft-wood-tsvwg-saratoga-congestion-control-04
 - draft-eddy-tsvwg-saratoga-tfrc-04
 - draft-wood-dtnrg-saratoga-13

- Discussed several times in DTNRG and TSVWG on lists and at group meetings, and at IETF69 TSVAREA, but have not yet asked for adoption.
 - Intent is to publish as experimental RFC matching the “flying code.”

- Development continues via the Saratoga mailing list: saratoga-discussion@googlegroups.com

- Some code and related material is publically available: http://saratoga.sourceforge.net/
Saratoga is in operational use

- Disaster Monitoring Constellation: http://dmcii.com/
- Surrey Satellite Technology Ltd (SSTL) has used Saratoga since 2004 to download Earth imagery from multiple satellites:
 - initially 8.1 Mbps downlink, 9600 bps uplink, running at line rates.
 - path asymmetry of 848:1
 - SSTL’s TechDemoSat-1, launching in 2014, has:
 - 400 Mbps downlink, up from 210 Mbps downlink now in flight.
 - Saratoga code conforming to current Internet-Draft.
- Cisco Systems has:
 - Saratoga implementation created for Square Kilometre Array effort.
 - funded Saratoga congestion control research at Uni. of Oklahoma.
- NASA has contributed:
 - Perl “reference implementation” used in interoperability testing.
- Charles Smith has contributed:
 - Wireshark decoder module for debugging implementations.
 - progress on development of C++ implementation for 64-bit Linux.

Background to *Saratoga*

- Reaction to size and slowness of an implementation of the CCSDS File Delivery Protocol (CFDP) being used for delivering images from first DMC satellite.
 - “CFDP Lite” later used on *Messenger* mission to Mercury.

- *Saratoga* version 0 developed at Surrey Satellite Technology Ltd (SSTL) by Chris Jackson, after scuba-diving the wreck of the *USS Saratoga* in Bikini Atoll.
 - Now used on Disaster Monitoring Constellation satellites.

- New version 1 created as a collaboration between SSTL, NASA, and Cisco Systems:
 - Originally thinking of IP-based bundle convergence layer for Delay/Disruption Tolerant Networking (DTN).
 - Now onboard SSTL’s TechDemoSat-1.

- *Saratoga* in daily operation from space *since 2004.*
Saratoga characteristics relevant to evolution of IETF transport protocols

- **High performance over very high delays**
 - Bufferbloat measurements show cable delays are now similar to lunar RF propagation delay.

- **Works with high bandwidth asymmetry**
 - Uses SNACKs – Selective Negative ACKs
 - Feedback can be paced by explicit requests
 - TCP breaks with path rate asymmetry above 50:1 ratio. **Saratoga** can operate at *orders of magnitude* higher than that.

- **Flexible congestion control**
 - Current options: fixed-rate, TCP-Friendly.
 - Many other possibilities.

- **Runs over UDP for portability**
 - Implemented in “user space” or as tasks in a real-time operating system.

- **Has feature profiles for lightweight embedded implementations**
 - Example target is **small flight computers**.
 - Very relevant to **Internet of Things** (IOT).

- **Scales to yottabyte-size files for Big Data**
Evolving IETF Transport Protocols

- Can’t keep defining “transport” as only TCP or UDP…
 - …or even as the Gang of Four: TCP, UDP, SCTP, DCCP.
- Transport protocols are where we implement end-to-end capabilities that are too difficult or too expensive to reproduce across N apps
 - Path MTU Discovery, transmission control, reliability, etc.
 - *Saratoga* is more a transport protocol than it is an application protocol…
 - …but contains notion of methods (GET, PUT, etc.) and data objects that are generally not associated with transport protocols.
 - CoAP, RELOAD are IETF APP and RAI protocols that contain a lot of typical transport functionality.
- **New IETF transports for the Internet** should *scale to high delays and throughput*, should *ACK efficiently*, should *support multiple congestion control algorithms*, and should be *runnable over UDP* for deployability through NATs in the real world.
 - *Saratoga* shows that this is achievable.