### tcpcrypt

Andrea Bittau, Michael Hamburg, Mark Handley, David Mazières, Dan Boneh

Stanford University, University College London

# Goal: encrypt most TCP traffic

- Zero configuration, works with NATs.
- Integrate with app-level authentication
- High performance, especially on servers.
- Avoid double encryption.

# Maximize security for each scenario

| Use case    | Preconfiguration                                   | Today's security                | Possible security        |  |
|-------------|----------------------------------------------------|---------------------------------|--------------------------|--|
| News site   | None                                               | None                            | No passive eavesdropping |  |
| Online shop | Server certificate Server auth                     |                                 | Server auth              |  |
| Forum       | Shared secret<br>(cookie) no server<br>certificate | None                            | Mutual auth              |  |
| Banking     | Shared secret and server certificate               | Mutual auth if cert and pass OK | Mutual auth if pass OK   |  |

## tcpcrypt handshake



INITI/2 don't fit in SYN / ACK: sent as data invisible to apps.

#### Session cached handshake



## MAC and Encryption

| src port             |       | dst port |          | MACed<br>Encrypted |              |
|----------------------|-------|----------|----------|--------------------|--------------|
| seq no               |       |          |          |                    | (64-bit seq) |
| ack no               |       |          |          |                    | (64-bit ack) |
| d. off.              | flags | window   | checksum | urg ptr            |              |
| options (e.g., SACK) |       | MAC      | option   |                    |              |

data

TCP length

**MACed** 

### tcpcrypt semantics

- If session ID is equal on both endpoints, no man in the middle.
- Authenticating session ID authenticate connection:
  - E.g., sign SID with cert, HMAC with cookie, password (PAKE), ...
  - Can also log and check after the fact.

## High performance

- Up to 25x higher connection accept rate than SSL on servers.
- Near TCP connection latency for session cached tcpcrypt connections.
- 9Gbit/s using AES+UMAC with AES-NI

#### Conclusion

- Encryption is general-purpose and practical to enable by default.
- Benefits of encrypting at transport layer:
  - Backwards compatible (e.g., NATs).
  - Benefits legacy apps.
  - Natural granularity for authentication.
  - Leverage existing handshake for negotiation

http://tcpcrypt.org