
Immediate ECN

Mirja Kuhlewind, David Wagner,
Juan Manuel Reyes Espinosa, Stuttgart Uni

Bob Briscoe, BT
IETF-88 TSVAREA

Nov 2013

Bob Briscoe was part-funded by the European Community
under its Seventh Framework Programme through the
Reducing Internet Transport Latency (RITE) project ICT-317700

summary & context

• Promising early results towards the aim of:
– the predictably low queuing delay of DCTCP*
– deployable on the public Internet, with existing hardware
– zero config or config-insensitive

• At IAB rmcat workshop, we foresaw a need to address:

• Why bring such early results to the IETF?
– to test the water on a redefinition of ECN

• to foster ECN deployment through more significant benefits

problem IETF wg formed this proposal

real-time media congestion avoidance rmcat -

prevent TCP bloating queues aqm 

make TCP smoother - 

* DCTCP: data centre TCP

problem
AQM dynamics

• buffer’s job: absorb bursts that dissipate by themselves
• all AQMs defer dropping for c.1 worst-case RTT

• for a flow with RTT of 20ms or 4ms
• e.g. content distribution network or home media server
• these AQMs suppress any signal for 5 or 25 of the flow’s own RTTs

• CoDel, PIE: auto-tune for varying line-rate
• also need to auto-tune for varying RTT

• it’s not ‘good’ to hold back from signalling for 100ms

it’s just necessary if the alternative is drop

bad
queue

good(?) queue

* @10Mb/s & 700B/pkt, 512pkt  3s for moving ave of queue to reach 63% of inst queue,
but not comparable with PIE & CoDel delays, which are absolute

good(?)
 queue

4ms

home
media
server

20ms
CDN

100ms
origin

RED w_q 512 pkt*

PIE max_burst 100ms

CoDel interval 100ms

AQM dynamics

solution
[from DCTCP]

• For ECN-capable packets
– shift the job of smoothing congestion signals from network to host

• the network signals ECN with no smoothing delay

• the transport can hide bursts of ECN signals from itself

• the transport knows
• whether it's TCP or RTP etc

• whether its in cong avoidance or slow-start

• and it knows its own RTT

• then short RTT flows can smooth the signals themselves
delayed only by their own RTT

• so they can fill troughs and absorb peaks that longer RTT flows cannot

• so it can decide
• whether to respond immediately

• or to smooth the signals

• and, if so, over what time

smoothing
congestion

signals

aims: real performance gain
(and avoid RTT-sensitive config)

• DCTCP on host uses immediate ECN
• DCTCP only smooths the ECN signals while in congestion avoidance
• DCTCP in slow-start responds without smoothing, immediately

reducing overshoot

* Modified DCTCP is only shown separate from DCTCP, because we improved the original DCTCP slightly

line

utilisation

buffer

occupancy b u f f e r s i z e

queue

management

operating point

 shallower

operating

point

good line
utilisation

lower queuing
delay

buffer kept
for bursts

TCP saw-teeth seeking
the operating point DCTCP:

more
smaller

saw-teeth

Today (at best)

TCP on end-systems

RED in queues

if solely change queues change queues

and end-systems

cuts delay but
poorer line
utilisation

time

Data Centre TCP (DCTCP)
high utilisation in steady state still leaves room for bursts

highly insensitive to configuration

aim: real performance gain

• classic ECN
• cannot justify deployment pain

for a questionable performance gain

• immediate ECN
• addresses predictability and low queuing delay

• including self-delay for short flows

• avoiding RTT-sensitive config

problem II
co-existence of DCTCP with existing Internet traffic

• data centre TCP was so-called only because it couldn’t
co-exist with Internet traffic

• can’t have a low delay threshold for ECN
and a deep threshold for drop
in one FIFO queue

• drop traffic would
push the queue to its
own balance point

• causing 100% marking
of ECN packets

• then ECN traffic would starve itself

ECN

drop

Queue
p
ac

k
et

 m
ar

k
/d

ro
p

p
ro

b
ab

il
it

y

0

1



co-existence solution

can use existing network hardware

• use weighted RED (WRED) implementation

• in an unusual configuration
– one FIFO queue with two instances of RED algo

• smoothed queue for drop (EWMA-constant = 9 say)*

• current queue for ECN (EWMA-constant = 0)

• as share of DCTCP grows
– more insensitive to config

* if exponential-weighting-constant = B,
then RED smooths the queue over 2B packets
if B = 9, RED smooths over 29 = 512 packets
if B = 0, RED smooths over 20 = 1 packet (i.e. it doesn’t smooth)

Instantaneous
or Averaged

Queue
q(wq)

ECN

drop

a similar coexistence approach

should be applicable to other AQMs

• ultimately, want to auto-tune against line-rate and RTT
– use a modern AQM that uses queuing delay as its metric

– and separate drop and ECN algos

• message for implementers in silicon
• ensure parameters can be configured separately for ECN

AQM smoothing
parameter

non-ECN
packets

ECN
packets

ARED ewma-const 9 0

PIE max_burst 100ms 0

CoDel interval 100ms 0

co-existence
results of ‘gating tests’

• explored large part of the much larger parameter space
• implemented in Linux 3.2.18; simulated in IKR simlib
• ‘gating tests’: long-running flows only
• paper under submission, available on request

• robust against starvation

• formula to derive
ECN config from drop config
to maintain rate fairness

• can then find sweet spot
for the drop config

Averaged
Queue
q(wq)

ECN

drop

• early deployment, when traffic mostly drop-based
have to set drop (and therefore ECN) threshold deep

• as more flows shift to DCTCP,
can set both thresholds shallower

a sample of the

results so far

Instantaneous queue

Averaged queue

(wq)

ECN

drop

smoothing
congestion

signals

problem III
incremental deployment
interop between classic and immediate ECN

• ECN widely implemented on hosts:
– on by default at TCP servers
– off by default at TCP clients

• turn clients on by default when deploy:
– accurate ECN feedback & ECN fall-back

host

buffers

small smoothed

responses to

each ECN

one big instant

response to ECN

per RTT

immediate ECN  
1

smoothed ECN 
2



1 don’t get full gain in latency until host upgrades as well
2 doubly delayed response to congestion
 these two ticks are based on conjecture, not experimental evidence (yet)

cross-layer / cross-wg impact on IETF

1. RFC 3168 may not need to be updated (see spare slide)
2. urgent given pace of AQM development
3. wire protocol: the main standards track change
4. algorithm experimentation expected

component IETF wg document

1 redefine meaning of ECN CE tsvwg Expt update to RFC3168

2 specify ECN behaviour in AQM algos aqm CoDel, PIE, (RED++?)

3 specify change to TCP feedback tcpm draft-ietf-accurate-ecn-reqs

4 specify change to TCP sender algo tcpm Expt update to RFC5861

concluding messages

• research in progress

• promise of predictably low delay during dynamics
• an unnecessary queue is not a ‘good’ queue

• adds RTT auto-tuning to AQM
• by shifting smoothing from network to host

• can use existing network hardware

• if you’re implementing a new AQM
• at least ensure parameters can be configured separately for ECN

• question: if subsequent experiments are as promising as these,

would there be an appetite in the transport area
to tweak the meaning of ECN?

Immediate ECN

Q&A
spare slides

which codepoint for immediate ECN?

• To use CE for immediate ECN,
may not need to update RFC3168 (Addition of ECN to IP):

...if the ECT codepoint is set in that packet's IP header

... then instead of dropping the packet, the router MAY

instead set the CE codepoint in the IP header.

An environment where all end nodes were ECN-Capable could

allow new criteria to be developed for setting the CE

codepoint, and new congestion control mechanisms for end-

node reaction to CE packets. However, this is a research

issue, and as such is not addressed in this document.

• Could use ECT(1) for immediate ECN
• but this unnecessarily wastes the CE codepoint

(who would want ‘sluggish ECN’?)

DCTCP in Action

20

Setup: Win 7, Broadcom 1Gbps Switch
Scenario: 2 long-lived flows, K = 30KB

(K
b

yt
e

s)

18

Parameters:
link capacity = 10Gbps
RTT = 480μs
smoothing constant (at source), g = 0.05.

For TCP:
Throughput → 75%

Throughput-Latency Tradeoff

Throughput > 94%
as K  0

DCTCP activity

• E2e Transport
– In Windows 8 Server

data center template
– I-D for DCTCP feedback (intended EXP)

[draft-kuehlewind-tcpm-accurate-ecn-01]

• AQM
– Existing kit: Just a degenerate config of RED
– Can be implemented as just a step at K packets (single ‘if’ command)
– For zero-delay can use a virtual queue [RC5670]

• hardware implementations [“How to Build a Virtual Queue from Two Leaky Buckets”]

• see HULL for specifics with DCTCP

• Analysis, papers, Linux & ns2 implementation, etc
– <http://www.stanford.edu/~alizade/Site/DCTCP.html>

– SIGCOMM paper gives entry point

Averaged

F
ig

u
re

s
 c

o
u
rt

e
s
y
 o

f
A

liz
a
d
e
h
 e

t
a
l

http://www.bobbriscoe.net/pubs.html
http://cseweb.ucsd.edu/~vahdat/papers/hull-nsdi12.pdf
http://www.stanford.edu/~alizade/Site/DCTCP.htm

Data Center TCP Algorithm

Switch side:

• Mark packets when Queue Length > K

Sender side:

• Maintain moving average of fraction of marked packets (α)

• Adaptive congestion window decrease:

B K Mark Don’t

Mark



each RTT : F 
of marked ACKs

Total # of ACKs
   (1 g)  gF



W  (1


2
)W

