DHCPv6/SLAAC Address Configuration Interaction Problem Statement

(draft-liu-bonica-v6ops-dhcpv6-slaac-problem)

Bing Liu(speaker), Ronald Bonica Xiangyang Gong, Wendong Wang

IETF 88@Vancouver, Nov 2013

Regarding the Mailing List Discussion

- ML discussions was regarding an overview of DHC/ND cooperation topic
 - Some people love DHC-only (follow the IPv4 style)
 - Some prefer ND (think about light bulbs, sensors...)
 - What is the boundary between DHC and ND
 - How they could serve respectively/efficiently
 - **—** ...
- This is an important/fundamental topic might need to be worked out
 - [draft-yourtchenko-ra-dhcpv6-comparison]
- But for this draft, we're currently focusing on an existing specific problem of address configuration

About this Draft

- We already have two (automatic) address configuration mechanisms
 - DHCPv6 and SLAAC
 - They would be probably co-exist in one network
- And they are correlated by several defined flags
 - A flag, M flag, O flag, defined in ND protocol
- But the behaviors of interpreting the flags are ambiguous
 - Ambiguity might be a problem for OAM.
 - 6man tried to clear the ambiguity before, but failed.
- This draft aims to:
 - identify operational problems caused by ambiguity; provide cautions to operators/administrators
 - might consequently promote re-work on standard revision to fix the problems

The Flags

- ND RA messages include the following flags
 - "Autonomous Flag": indicates that a prefix can be used for SLAAC (included in the Prefix Information Option)
 - "Managed Flag": indicates that addresses are available via DHCPv6
 - "OtherConfig Flag": indicates that other configuration information (DNS .etc) is available via DHCPv6
- Neither [RFC4861] nor [RFC4862] completely specifies the host behavior when interpreting these flags

Hosts might confuse about...

- Is there any dependency between the two mechanisms?
 - E.g. Do I need to see M=1 to initiate DHCPv6? If there are no RAs at all, should I initiate DHCPv6 by myself?
- Should I interpret these flags as advisory or prescriptive?
 - E.g. when M flag set, MUST I initiate DHCPv6 or might be according to other factors?
 - Especially when flags are in transition
 - E.g. I'm already SLAAC-configured, should I still care about the M flag changed?
- Relationship between "Address Configuring Method" and "Address Lifetime"
 - When method changes, should I immediately release the addresses or just wait them expired
- Is there any dependency between the flags?
 - one flag is set or not, would behavior of other flags be impacted?

Testing

- We tested various operating system's handling of these flags:
 - Windows 7
 - Linux (Ubuntu 12.10)
 - Mac OS X (10.7)
 - iOS (6.1.3, iPod Touch4)
 - *Android (4.0.4, HTC Incredible S)

(*Android lacks support of DHCPv6 so far.)

Important test results

A flag behaviors

For SLAAC-configured hosts, when A changed from 1 to 0, Win7 deprecated SLAAC while Linux/MAC/iOS ignored the RA messages. ("Address Configuring Method" vs "Address Lifetime")

M flag behaviors

- Linux/MAC only start DHCPv6 until receive RA with M=1 (dependency between the two mechanisms)
- SLAAC-configured hosts receiving RA with M=1, Win7 does DHCPv6, Linux/ MAC don't (advisory or prescriptive)
- ➤ DHCPv6-configured hosts receiving RA with M=0, Win7 release DHCPv6 addresses, Linux/MAC doesn't ("Address Configuring Method" vs "Address Lifetime")

O flag behaviors

- O is not independent with M. When M set, O is implicitly set as well (This is reasonable)
- Linux/MAC won't initiate stateless DHCPv6 when A flag is NOT set; Win7/iOS would (dependency between the flags)
- > O=1, then M from 1 to 0 or vice versa, Win7 would switch to stateless DHCPv6 or statefull DHCPv6; Linux/MAC/iOS no action (advisory or prescriptive)

Operational Issues

 Given inconsistent host behavior, it is difficult for network managers to predict and control host addressing

In the case of renumbering

Renumbering exercise may require transition from SLAAC to DHCP or vice versa. [RFC7010]

In the case of cold start

This make it difficult for a site network manager to configure systems in such a way that all hosts boot in a consistent way. "[RFC5887]

In the nominal cases

- network wants hosts to do DHCPv6-only configuration
- the hosts have been SLAAC-configured, then the network need the hosts to do DHCPv6 simultaneously (e.g. for multihoming)
- the network wants the hosts to do statelssDHCPV6-only; for example, the hosts are configured with self-generated addresses (e.g. ULA), and they also need to contact the DHCPv6 server for info-configuration

Question

- Do operators/administrators care about the problems?
- Adopted by v6ops as a Problem Statement?

Comments? Thank you

leo.liubing@huawei.com
rbonica@juniper.net
xygong@bupt.edu.cn
wdwang@bupt.edu.cn
IETF88, Vancouver

Backup Slides

Test Case1: Initial behavior

- ➤ Host from non-configured to configured, we tested different A/M/O combinations in each OS platform. The configured states are enumerated as the following:
 - SLAAC only
 - SLAAC+Stateless DHCPv6 (info-request other-info than addresses)
 - SLAAC+Stateful DHCPv6 (address and other-info(if available) together)
 - Stateful DHCPv6 only (address and other-info(if available) together)
 - Stateless DHCPv6 only (only available in Windows 7)
- Follwoing slides illustrate state graphs of the OS platforms respectively

Windows 7/iOS (6.1.3)

Linux (Ubuntu 12.10) / Mac OS X (10.7)

Test Case1 Summary

- A is interpreted as prescript in each OS
- M is interpreted as prescript in each OS at the initial state, for controlling DHCPv6
- A and M are independent
- <u>A</u> and <u>O</u> are not totally independent. In Linux and Mac, A=1 is required for O=1 triggering DHCPv6 info-request; not applicable in Windows 7
- M and O are not totally independent. M=1 has priority than O=1 (when M=1 O=1, system will configure adderss and other-info together, rather than respectively)

Test Case2: SLAAC/DHCPv6 Switching

SLAAC only —> **DHCPv6 only** (SLAAC-only host receiving RA with A=0 M=1)

- Windows 7: abandon SLAAC, initiate DHCPv6, successfully switched
- Linux /Mac OS X/iOS: keep SLAAC, don't initiate DHCPv6 unless SLAAC is expired and no continuous RA

DHCPv6 only —> **SLAAC** only (DHCPv6-only host receiving A=1 M=0)

- ➤ Windows 7: config SLAAC, release DHCPv6,
- Linux: config SLAAC, keep DHCPv6 and keep renewing
- Mac OS X/iOS: config SLAAC, keep DHCPv6 and don't renew

Test Case3: Stateful/Stateless DHCPv6 Switching

Stateless—> Stateful (M changes from 0 to 1; keep A=O=1)

- ➤ Windows 7: initiates statefull DHCPv6, configures DHCPv6 address as well as re-configure other-info
- Linux/Mac OS X/iOS: no action

<u>Stateful -> Stateless</u> (M changes from 1 to 0; keep A=O=1)

- Windows 7: releases all DHCPv6 config including address and other-info initiates statelss DHCPv6 information-request/reply
- Linux/Mac OS X/iOS: no action, renew when expired

END