
dice K. Hartke
Internet-Draft Universitaet Bremen TZI
Intended status: Informational H. Tschofenig
Expires: August 18, 2014 ARM Ltd.
 February 14, 2014

 A DTLS 1.2 Profile for the Internet of Things
 draft-hartke-dice-profile-03

Abstract

 This document defines a DTLS profile that is suitable for Internet of
 Things applications and is reasonably implementable on many
 constrained devices.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 18, 2014.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Hartke & Tschofenig Expires August 18, 2014 [Page 1]

Internet-Draft DTLS 1.2 Profile for IoT February 2014

Table of Contents

 1. Introduction . 2
 2. The Communication Model 4
 3. The Ciphersuite Concept 5
 4. Pre-Shared Secret Authentication with DTLS 6
 5. Raw Public Key Use with DTLS 8
 6. Certificate Use with DTLS 10
 7. Error Handling . 11
 8. Session Resumption . 12
 9. TLS Compression . 13
 10. Perfect Forward Secrecy 13
 11. Keep-Alive . 14
 12. Negotiation and Downgrading Attacks 14
 13. Privacy Considerations 14
 14. Security Considerations 15
 15. IANA Considerations . 15
 16. Acknowledgements . 15
 17. References . 16
 17.1. Normative References 16
 17.2. Informative References 17
 Authors’ Addresses . 19

1. Introduction

 This document defines a DTLS 1.2 [RFC6347] profile that offers
 communication security for Internet of Things (IoT) applications and
 is reasonably implementable on many constrained devices. It aims to
 meet the following goals:

 o One-stop shop for implementers through the specification jungle.

 o This document does not alter the DTLS 1.2 specification.

 o This document does not introduce new extensions.

 o This profile aligns with the DTLS security modes of the
 Constrained Application Protocol (CoAP) [I-D.ietf-core-coap].

 DTLS is used to secure a number of applications run over an
 unreliable datagram transport. CoAP [I-D.ietf-core-coap] is one such
 protocol and has been designed specifically for use in IoT
 environments. CoAP can be secured using a number of different ways,
 also called security modes. These security modes are:

 No Security Protection at the Transport Layer: No DTLS is used but
 instead application layer security functionality is assumed.

Hartke & Tschofenig Expires August 18, 2014 [Page 2]

Internet-Draft DTLS 1.2 Profile for IoT February 2014

 Shared Secret-based DTLS Authentication: DTLS supports the use of
 shared secrets [RFC4279]. This credential is useful if the number
 of communication relationships between the IoT device and servers
 is small and for very constrained devices. Shared secret-based
 authentication mechanisms offer good performance and require a
 minimum of data to be exchanged.

 DTLS Authentication using Asymmetric Credentials: TLS supports
 client and server authentication using asymmetric credentials.
 Two approaches for validating these public key are available.
 First, [I-D.ietf-tls-oob-pubkey] allows raw public keys to be used
 in TLS without the overhead of certificates. This approach
 requires out-of-band validation of the public key. Second, the
 use of X.509 certificates [RFC5280] with TLS is common on the Web
 today (at least for server-side authentication) and certain IoT
 environments may also re-use those capabilities. Certificates
 bind an identifier to the public key signed by a certification
 authority (CA). A trust anchor store has to be provisioned on the
 device to indicate what CAs are trusted. Furthermore, the
 certificate may contain a wealth of other information used to make
 authorization decisions.

 As described in [I-D.ietf-lwig-tls-minimal] an application designer
 developing an IoT device needs to think about the security threats
 that need to be mitigated. For many Internet connected devices it
 is, however, likely that authentication of the device and the server
 infrastructure will be required. Along with the ability to upload
 sensor data and to retrieve configuration information the need for
 integrity and confidentiality protection will arise. While these
 security services can be provided at different layers in the protocol
 stack the use of channel security, as offered by DTLS, has been very
 popular on the Internet and it is likely to be useful for IoT
 scenarios as well. In case the channel security features offered by
 DTLS meet the security requirements of your application the remainder
 of the document might offer useful guidance.

 Not every IoT deployment will use CoAP but the discussion regarding
 choice of credentials and cryptographic algorithms will be very
 similar. As such, the discussions in this document are applicable
 beyond the use of the CoAP protocol.

 The design of DTLS is intentionally very similar to TLS. Since DTLS
 operates on top of an unreliable datagram transport a few
 enhancements to the TLS structure are, however necessary. RFC 6347
 explains these differences in great detail. As a short summary, for
 those familiar with TLS the differences are:

Hartke & Tschofenig Expires August 18, 2014 [Page 3]

Internet-Draft DTLS 1.2 Profile for IoT February 2014

 o An explicit sequence number and an epoch field is included in the
 TLS Record Layer. Section 4.1 of RFC 6347 explains the processing
 rules for these two new fields. The value used to compute the MAC
 is the 64-bit value formed by concatenating the epoch and the
 sequence number.

 o Stream ciphers must not be used with DTLS. The only stream cipher
 defined for TLS 1.2 is RC4.

 o The TLS Handshake Protocol has been enhanced to include a
 stateless cookie exchange for Denial of Service (DoS) resistance.
 Furthermore, the header has been extended to deal with message
 loss, reordering, and fragmentation. Retransmission timers have
 been included to deal with message loss. For DoS protection a new
 handshake message, the HelloVerifyRequest, was added to DTLS.
 This handshake message is sent by the server and includes a
 stateless cookie, which is returned in a ClientHello message back
 to the server. This type of DoS protection mechanism has also
 been incorporated into the design of IKEv2. Although the exchange
 is optional for the server to execute, a client implementation has
 to be prepared to respond to it.

2. The Communication Model

 This document describes a profile of DTLS 1.2 and to be useful it has
 to make assumptions about the envisioned communication architecture.
 The architecture shown in Figure 1 assumes a uni-cast communication
 interaction with an IoT device acting as a client and the client
 interacts with one or multiple servers. Which server to contact is
 based on pre-configuration onto the client (e.g., as part of the
 firmware). This configuration information also includes information
 about the PSK identity and the corresponding secret to be used with
 that specific server (in case of symmetric credentials). For
 asymmetric cryptography mutual authentication is assumed in this
 profile. For raw public keys the public key or the hash of the
 public key is assumed to be available to both parties. For
 certificate-based authentication the client may have a trust anchor
 store pre-populated, which allows the client to perform path
 validation for the certificate obtained during the handshake with the
 server. The client also needs to know which certificate or raw
 public key it has to use with a specific server.

 This document only focuses on the description of the DTLS client-side
 functionality.

Hartke & Tschofenig Expires August 18, 2014 [Page 4]

Internet-Draft DTLS 1.2 Profile for IoT February 2014

 +////////////////////////////////////+
 | Configuration |
 |////////////////////////////////////|
 | Server A --> PSK Identity, PSK |
 | Server B --> Public Key (Server B),|
 | Public Key (Client) |
 | Server C --> Public Key (Client), |
 | Trust Anchor Store |
 +------------------------------------+
 oo
 oooooo
 o
 +------+
 |Client|---
 +------+ \
 \ ,-------.
 ,’ ‘. +------+
 / IP-based \ |Server|
 (Network) | A |
 \ / +------+
 ‘. ,’
 ’---+---’ +------+
 | |Server|
 | | B |
 | +------+
 |
 | +------+
 +----------------->|Server|
 | C |
 +------+

 Figure 1: DTLS Profile: Assumed Communication Model.

 A future version of this document may provide profiles for other
 communication architectures.

3. The Ciphersuite Concept

 TLS (and consequently DTLS) introduced the concept of ciphersuites
 and an IANA registry [IANA-TLS] was created to keep track of the
 specified suites. A ciphersuites (and the specification that defines
 it) contains the following information:

 o Authentication and Key Exchange Algorithm (e.g., PSK)

 o Cipher and Key Length(e.g., AES with 128 bit keys)

Hartke & Tschofenig Expires August 18, 2014 [Page 5]

Internet-Draft DTLS 1.2 Profile for IoT February 2014

 o Mode of operation (e.g., CBC)

 o Hash Algorithm for Integrity Protection (e.g., SHA in combination
 with HMAC)

 o Hash Algorithm for use with the Pseudorandom Function (e.g. HMAC
 with the SHA-256)

 o Misc information (e.g., length of authentication tags)

 The TLS ciphersuite TLS_PSK_WITH_AES_256_CBC_SHA, for example, uses a
 pre-shared authentication and key exchange algorithm. RFC 4279,
 which defined this ciphersuite predates publication of TLS 1.2. It
 uses the Advanced Encryption Standard (AES) encryption algorithm,
 which is a block cipher. Since the AES algorithm supports different
 key lengths (such as 128, 192 and 256 bits) this information has to
 be specified as well and the selected ciphersuite supports 256 bit
 keys. A block cipher encrypts plaintext in fixed-size blocks and AES
 operates on fixed block size of 128 bits. For messages exceeding 128
 bits, the message is partitioned into 128-bit blocks and the AES
 cipher is applied to these input blocks with appropriate chaining,
 which is called mode of operation. In our example, the mode of
 operation is cipher block chaining (CBC). Since encryption itself
 does not provide integrity protection a hash function is specified as
 well, which will be used in concert with the HMAC function. In this
 case, the Secure Hash Algorithm (SHA).

 TLS 1.2 introduced Authenticated Encryption with Associated Data
 (AEAD) ciphersuites. AEAD is a class of block cipher modes which
 encrypt (parts of) the message and authenticate the message
 simultaneously. Examples of such modes include the Counter with CBC-
 MAC (CCM) mode, and the Galois/Counter Mode (GCM).

 TLS 1.2 also replaced the combination of MD5/SHA-1 hash functions in
 the TLS pseudo random function (PRF) with cipher-suite-specified
 PRFs. For this reason authors of more recent TLS 1.2 ciphersuite
 specifications explicitly indicate the MAC algorithm and the hash
 functions used with the TLS PRF.

4. Pre-Shared Secret Authentication with DTLS

 The use of pre-shared secret credentials is one of the most basic
 techniques for DTLS since it is both computational efficient and
 bandwidth conserving. Pre-shared secret based authentication was
 introduced to TLS with RFC 4279 [RFC4279]. The exchange shown in
 Figure 2 illustrates the DTLS exchange including the cookie exchange.
 While the server is not required to initiate a cookie exchange with

Hartke & Tschofenig Expires August 18, 2014 [Page 6]

Internet-Draft DTLS 1.2 Profile for IoT February 2014

 every handshake, the client is required to implement and to react on
 it when challenged.

 Client Server
 ------ ------
 ClientHello -------->

 <-------- HelloVerifyRequest
 (contains cookie)

 ClientHello -------->
 (with cookie)
 ServerHello
 *ServerKeyExchange
 <-------- ServerHelloDone
 ClientKeyExchange
 ChangeCipherSpec
 Finished -------->
 ChangeCipherSpec
 <-------- Finished

 Application Data <-------> Application Data

 Legend:

 * indicates an optional message payload

 Figure 2: DTLS PSK Authentication including the Cookie Exchange.

 [RFC4279] does not mandate the use of any particular type of
 identity. Hence, the TLS client and server clearly have to agree on
 the identities and keys to be used. The mandated encoding of
 identities in Section 5.1 of RFC 4279 aims to improve
 interoperability for those cases where the identity is configured by
 a person using some management interface. Many IoT devices do,
 however, not have a user interface and most of their credentials are
 bound to the device rather than the user. Furthermore, credentials
 are provisioned into trusted hardware modules or in the firmware by
 the developers. As such, the encoding considerations are not
 applicable to this usage environment. For use with this profile the
 PSK identities MUST NOT assume a structured format (as domain names,
 Distinguished Names, or IP addresses have) and a bit-by-bit
 comparison operation can then be used by the server-side
 infrastructure.

Hartke & Tschofenig Expires August 18, 2014 [Page 7]

Internet-Draft DTLS 1.2 Profile for IoT February 2014

 As described in Section 2 clients may have pre-shared keys with
 several different servers. The client indicates which key it uses by
 including a "PSK identity" in the ClientKeyExchange message. To help
 the client in selecting which PSK identity / PSK pair to use, the
 server can provide a "PSK identity hint" in the ServerKeyExchange
 message. For Iot environments a simplifying assumption is made that
 the hint for PSK key selection is based on the domain name of the
 server. Hence, servers SHOULD NOT send the "PSK identity hint" in
 the ServerKeyExchange message and client MUST ignore the message.

 RFC 4279 requires TLS implementations supporting PSK ciphersuites to
 support arbitrary PSK identities up to 128 octets in length, and
 arbitrary PSKs up to 64 octets in length. This is a useful
 assumption for TLS stacks used in the desktop and mobile environment
 where management interfaces are used to provision identities and
 keys. For the IoT environment, however, many devices are not
 equipped with displays and input devices (e.g., keyboards). Hence,
 keys are distributed as part of hardware modules or are embedded into
 the firmware. As such, these restrictions are not applicable to this
 profile.

 Constrained Application Protocol (CoAP) [I-D.ietf-core-coap]
 currently specifies TLS_PSK_WITH_AES_128_CCM_8 as the mandatory to
 implement ciphersuite for use with shared secrets. This ciphersuite
 uses the AES algorithm with 128 bit keys and CCM as the mode of
 operation. The label "_8" indicates that an 8-octet authentication
 tag is used. This ciphersuite makes use of the default TLS 1.2
 Pseudorandom Function (PRF), which uses HMAC with the SHA-256 hash
 function.

5. Raw Public Key Use with DTLS

 The use of raw public keys with DTLS, as defined in
 [I-D.ietf-tls-oob-pubkey], is the first entry point into public key
 cryptography without having to pay the price of certificates and a
 PKI. The specification re-uses the existing Certificate message to
 convey the raw public key encoded in the SubjectPublicKeyInfo
 structure. To indicate support two new TLS extensions had been
 defined as shown in Figure 3, namely the server_certificate_type and
 the client_certificate_type. To operate this mechanism securely it
 is necessary to authenticate and authorize the public keys out-of-
 band. This document therefore assumes that a client implementation
 comes with one or multiple raw public keys of servers, it has to
 communicate with, pre-provisioned. Additionally, a device will have
 its own raw public key. To replace, delete, or add raw public key to
 this list requires a software update, for example using a firmware
 update.

Hartke & Tschofenig Expires August 18, 2014 [Page 8]

Internet-Draft DTLS 1.2 Profile for IoT February 2014

 Client Server
 ------ ------

 ClientHello -------->
 client_certificate_type
 server_certificate_type

 <------- HelloVerifyRequest

 ClientHello -------->
 client_certificate_type
 server_certificate_type

 ServerHello
 client_certificate_type
 server_certificate_type
 Certificate
 ServerKeyExchange
 CertificateRequest
 <-------- ServerHelloDone

 Certificate
 ClientKeyExchange
 CertificateVerify
 [ChangeCipherSpec]
 Finished -------->

 [ChangeCipherSpec]
 <-------- Finished

 Figure 3: DTLS Raw Public Key Exchange including the Cookie Exchange.

 The ciphersuite for use with this credential type is
 TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8 [I-D.mcgrew-tls-aes-ccm-ecc].
 This elliptic curve cryptography (ECC) based AES-CCM TLS ciphersuite
 uses the Elliptic Curve Diffie Hellman (ECDHE) as the key
 establishment mechanism and an Elliptic Curve Digital Signature
 Algorithm (ECDSA) for authentication. This ciphersuite make use of
 the AEAD capability in DTLS 1.2 and utilizes an eight-octet
 authentication tag. Based on the Diffie-Hellman it provides perfect
 forward secrecy (PFS). More details about the PFS can be found in
 Section 10.

 RFC 6090 [RFC6090] provides valuable information for implementing
 Elliptic Curve Cryptography algorithms.

Hartke & Tschofenig Expires August 18, 2014 [Page 9]

Internet-Draft DTLS 1.2 Profile for IoT February 2014

 Since many IoT devices will either have limited ways to log error or
 no ability at all, any error will lead to implementations attempting
 to re-try the exchange.

 QUESTION: [I-D.sheffer-tls-bcp] recommends a different ciphersuite,
 namely TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 [RFC5289] or
 alternatively TLS_DHE_RSA_WITH_AES_128_GCM_SHA256 (with a 2048-bit or
 1024 DH parameters as second and third priority, respectively). Is
 TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8 a good choice?

6. Certificate Use with DTLS

 The use of mutual certificate-based authentication is shown in
 Figure 4. Note that the figure also makes use of the cached info
 extension, which is indicated by the TLS extension
 (cached_information) and the changed content in the exchanged
 certificates. Caching certificate chains allows the client to reduce
 the communication overhead significantly since otherwise the server
 would provide the end entity certificate, and the certificate chain.
 Because certificate validation requires that root keys be distributed
 independently, the self-signed certificate that specifies the root
 certificate authority is omitted from the chain. Client
 implementations MUST be provisioned with a trust anchor store that
 contains the root certificates. The use of the Trust Anchor
 Management Protocol (TAMP) [RFC5934] is, however, not envisioned.
 Instead IoT devices using this profile MUST rely a software update
 mechanism to provision these trust anchors.

 When DTLS is used to secure CoAP messages then the server provided
 certificates MUST contain the fully qualified DNS domain name or
 "FQDN". The coaps URI scheme is described in Section 6.2 of
 [I-D.ietf-core-coap]. This FQDN is stored in the SubjectAltName or
 in the CN, as explained in Section 9.1.3.3 of [I-D.ietf-core-coap],
 and used by the client to match it against the FQDN used during the
 look-up process, as described in RFC 6125 [RFC6125]. For the profile
 in this specification does not assume dynamic discovery of local
 servers.

 For client certificates the identifier used in the SubjectAltName or
 in the CN MUST be an EUI-64 [EUI64], as mandated in Section 9.1.3.3
 of [I-D.ietf-core-coap].

 For certificate revocation neither the Online Certificate Status
 Protocol (OCSP) nor Certificate Revocation Lists (CRLs) are used.
 Instead, this profile relies on a software update mechanism. While
 multiple OCSP stapling [RFC6961] has recently been introduced as a
 mechanism to piggyback OCSP request/responses inside the DTLS/TLS
 handshake to avoid the cost of a separate protocol handshake further

Hartke & Tschofenig Expires August 18, 2014 [Page 10]

Internet-Draft DTLS 1.2 Profile for IoT February 2014

 investigations are needed to determine its suitability for the IoT
 environment.

 Client Server
 ------ ------

 ClientHello -------->
 cached_information

 <------- HelloVerifyRequest

 ClientHello -------->
 cached_information
 ServerHello
 cached_information
 Certificate
 ServerKeyExchange
 CertificateRequest
 <-------- ServerHelloDone

 Certificate
 ClientKeyExchange
 CertificateVerify
 [ChangeCipherSpec]
 Finished -------->

 [ChangeCipherSpec]
 <-------- Finished

 Figure 4: DTLS Mutual Certificate-based Authentication.

 Regarding the ciphersuite choice the discussion in Section 5 applies.
 Further details about X.509 certificates can be found in
 Section 9.1.3.3 of [I-D.ietf-core-coap].

 QUESTION: What restrictions regarding the depth of the certificate
 chain should be made? Is one level enough?

7. Error Handling

 DTLS uses the Alert protocol to convey error messages and specifies a
 longer list of errors. However, not all error messages defined in
 the TLS specification are applicable to this profile. All error
 messages marked as RESERVED are only supported for backwards
 compatibility with SSL and are therefore not applicable to this
 profile. Those include decryption_failed_RESERVED,

Hartke & Tschofenig Expires August 18, 2014 [Page 11]

Internet-Draft DTLS 1.2 Profile for IoT February 2014

 no_certificate_RESERVE, and export_restriction_RESERVED. A number of
 the error messages are applicable only for certificate-based
 authentication ciphersuites. Hence, for PSK and raw public key use
 the following error messages are not applicable: bad_certificate,
 unsupported_certificate, certificate_revoked, certificate_expired,
 certificate_unknown, unknown_ca, and access_denied.

 Since this profile does not make use of compression at the TLS layer
 the decompression_failure error message is not applicable either.

 RFC 4279 introduced a new alert message unknown_psk_identity for PSK
 ciphersuites. As stated in Section 2 of RFC 4279 the
 decryption_error error message may also be used instead. For this
 profile the TLS server MUST return the decryption_error error message
 instead of the unknown_psk_identity.

 Furthermore, the following errors should not occur based on the
 description in this specification:

 protocol_version: This document only focuses on one version of the
 DTLS protocol.

 insufficient_security: This error message indicates that the server
 requires ciphers to be more secure. This document does, however,
 specify the only acceptable ciphersuites and client
 implementations must support them.

 user_canceled: The IoT devices in focus of this specification are
 assumed to be unattended.

8. Session Resumption

 Session resumption is a feature of DTLS that allows a client to
 continue with an earlier established session state. The resulting
 exchange is shown in Figure 5. In addition, the server may choose
 not to do a cookie exchange when a session is resumed. Still,
 clients have to be prepared to do a cookie exchange with every
 handshake.

Hartke & Tschofenig Expires August 18, 2014 [Page 12]

Internet-Draft DTLS 1.2 Profile for IoT February 2014

 Client Server
 ------ ------

 ClientHello -------->
 ServerHello
 [ChangeCipherSpec]
 <-------- Finished
 [ChangeCipherSpec]
 Finished -------->
 Application Data <-------> Application Data

 Figure 5: DTLS Session Resumption.

 Clients MUST implement session resumption to improve the performance
 of the handshake (in terms of reduced number of message exchanges,
 lower computational overhead, and less bandwidth conserved).

 Since the communication model described in Section 2 does not assume
 that the server is constrained. RFC 5077 [RFC5077] describing TLS
 session resumption without server-side state is not utilized by this
 profile.

9. TLS Compression

 [I-D.sheffer-tls-bcp] recommends to always disable DTLS-level
 compression due to attacks. For IoT applications compression at the
 DTLS is not needed since application layer protocols are highly
 optimized and the compression algorithms at the DTLS layer increase
 code size and complexity. Hence, for use with this profile
 compression at the DTLS layer MUST NOT be implemented by the DTLS
 client.

10. Perfect Forward Secrecy

 Perfect forward secrecy is designed to prevent the compromise of a
 long-term secret key from affecting the confidentiality of past
 conversations. The PSK ciphersuite recommended in the CoAP
 specification [I-D.ietf-core-coap] does not offer this property.
 [I-D.sheffer-tls-bcp] on the other hand recommends using ciphersuites
 offering this security property.

 QUESTION: Should the PSK ciphersuite offer PFS?

Hartke & Tschofenig Expires August 18, 2014 [Page 13]

Internet-Draft DTLS 1.2 Profile for IoT February 2014

11. Keep-Alive

 RFC 6520 [RFC6520] defines a heartbeat mechanism to test whether the
 other peer is still alive. The same mechanism can also be used to
 perform path MTU discovery.

 QUESTION: Do IoT deployments make use of this extension?

12. Negotiation and Downgrading Attacks

 CoAP demands version 1.2 of DTLS to be used and the earlier version
 of DTLS is not supported. As such, there is no risk of downgrading
 to an older version of DTLS. The work described in
 [I-D.bmoeller-tls-downgrade-scsv] is therefore also not applicable to
 this environment since there is no legacy server infrastructure to
 worry about.

 QUESTION: Should we say something for non-CoAP use of DTLS?

 To prevent the TLS renegotiation attack [RFC5746] clients MUST
 respond to server-initiated renegotiation attempts with an Alert
 message (no_renegotiation) and clients MUST NOT initiate them. TLS
 and DTLS allows a client and a server who already have a TLS
 connection to negotiate new parameters, generate new keys, etc by
 initiating a TLS handshake using a ClientHello message.
 Renegotiation happens in the existing TLS connection, with the new
 handshake packets being encrypted along with application data.

13. Privacy Considerations

 The DTLS handshake exchange conveys various identifiers, which can be
 observed by an on-path eavesdropper. For example, the DTLS PSK
 exchange reveals the PSK identity, the supported extensions, the
 session id, algorithm parameters, etc. When session resumption is
 used then individual TLS sessions can be correlated by an on-path
 adversary. With many IoT deployments it is likely that keying
 material and their identifiers are persistent over a longer period of
 time due to the cost of updating software on these devices.

 User participation with many IoT deployments poses a challenge since
 many of the IoT devices operate unattended, even though they will
 initially be enabled by a human. The ability to control data sharing
 and to configure preference will have to be provided at a system
 level rather than at the level of a DTLS profile, which is the scope
 of this document. Quite naturally, the use of DTLS with mutual
 authentication will allow a TLS server to collect authentication
 information about the IoT device (potentially over a long period of
 time). While this strong form of authentication will prevent mis-

Hartke & Tschofenig Expires August 18, 2014 [Page 14]

Internet-Draft DTLS 1.2 Profile for IoT February 2014

 attribution it also allows strong identification. This device-
 related data collection (e.g., sensor recordings) will be associated
 with other data to be truly useful and this extra data might include
 personal data about the owner of the device or data about the
 environment it senses. Consequently, the data stored on the server-
 side will be vulnerable to stored data compromise. For the
 communication between the client and the server this specification
 prevents eavesdroppers to gain access to the communication content.
 While the PSK-based ciphersuite does not provide PFS the asymmetric
 version does. No explicit techniques, such as extra padding, have
 been provided to make traffic analysis more difficult.

14. Security Considerations

 This entire document is about security.

 The TLS protocol requires random numbers to be available during the
 protocol run. For example, during the ClientHello and the
 ServerHello exchange the client and the server exchange random
 numbers. Also, the use of the Diffie Hellman exchange requires
 random numbers during the key pair generation. Special care has to
 be paid when generating random numbers in embedded systems as many
 entropy sources available on desktop operating systems or mobile
 devices might be missing, as described in [Heninger]. Consequently,
 if not enough time is given during system start time to fill the
 entropy pool then the output might be predictable and repeatable, for
 example leading to the same keys generated again and again.
 Guidelines and requirements for random number generation can be found
 in RFC 4086 [RFC4086].

 We would also like to point out that designing a software update
 mechanism into an IoT system is crucial to ensure that both
 functionality can be enhanced and that potential vulnerabilities can
 be fixed. This software update mechanism is also useful for changing
 configuration information, for example, trust anchors and other
 keying related information.

15. IANA Considerations

 This document includes no request to IANA.

16. Acknowledgements

 Thanks to Rene Hummen, Sye Loong Keoh, Sandeep Kumar, Eric Rescorla,
 Zach Shelby, and Sean Turner for helpful comments and discussions
 that have shaped the document.

Hartke & Tschofenig Expires August 18, 2014 [Page 15]

Internet-Draft DTLS 1.2 Profile for IoT February 2014

17. References

17.1. Normative References

 [EUI64] "GUIDELINES FOR 64-BIT GLOBAL IDENTIFIER (EUI-64)
 REGISTRATION AUTHORITY", April 2010,
 <http://standards.ieee.org/regauth/oui/tutorials/
 EUI64.html>.

 [I-D.ietf-core-coap]
 Shelby, Z., Hartke, K., and C. Bormann, "Constrained
 Application Protocol (CoAP)", draft-ietf-core-coap-18
 (work in progress), June 2013.

 [I-D.ietf-tls-cached-info]
 Santesson, S. and H. Tschofenig, "Transport Layer Security
 (TLS) Cached Information Extension", draft-ietf-tls-
 cached-info-15 (work in progress), October 2013.

 [I-D.ietf-tls-oob-pubkey]
 Wouters, P., Tschofenig, H., Gilmore, J., Weiler, S., and
 T. Kivinen, "Using Raw Public Keys in Transport Layer
 Security (TLS) and Datagram Transport Layer Security
 (DTLS)", draft-ietf-tls-oob-pubkey-11 (work in progress),
 January 2014.

 [I-D.mcgrew-tls-aes-ccm-ecc]
 McGrew, D., Bailey, D., Campagna, M., and R. Dugal, "AES-
 CCM ECC Cipher Suites for TLS", draft-mcgrew-tls-aes-ccm-
 ecc-08 (work in progress), February 2014.

 [RFC4279] Eronen, P. and H. Tschofenig, "Pre-Shared Key Ciphersuites
 for Transport Layer Security (TLS)", RFC 4279, December
 2005.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC5746] Rescorla, E., Ray, M., Dispensa, S., and N. Oskov,
 "Transport Layer Security (TLS) Renegotiation Indication
 Extension", RFC 5746, February 2010.

 [RFC6066] Eastlake, D., "Transport Layer Security (TLS) Extensions:
 Extension Definitions", RFC 6066, January 2011.

Hartke & Tschofenig Expires August 18, 2014 [Page 16]

Internet-Draft DTLS 1.2 Profile for IoT February 2014

 [RFC6125] Saint-Andre, P. and J. Hodges, "Representation and
 Verification of Domain-Based Application Service Identity
 within Internet Public Key Infrastructure Using X.509
 (PKIX) Certificates in the Context of Transport Layer
 Security (TLS)", RFC 6125, March 2011.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, January 2012.

 [RFC6520] Seggelmann, R., Tuexen, M., and M. Williams, "Transport
 Layer Security (TLS) and Datagram Transport Layer Security
 (DTLS) Heartbeat Extension", RFC 6520, February 2012.

17.2. Informative References

 [Heninger]
 Heninger, N., Durumeric, Z., Wustrow, E., and A.
 Halderman, "Mining Your Ps and Qs: Detection of Widespread
 Weak Keys in Network Devices", 21st USENIX Security
 Symposium, https://www.usenix.org/conference/
 usenixsecurity12/technical-sessions/presentation/heninger,
 2012.

 [I-D.bmoeller-tls-downgrade-scsv]
 Moeller, B. and A. Langley, "TLS Fallback Signaling Cipher
 Suite Value (SCSV) for Preventing Protocol Downgrade
 Attacks", draft-bmoeller-tls-downgrade-scsv-01 (work in
 progress), November 2013.

 [I-D.campagna-suitee]
 Campagna, M., "A Cryptographic Suite for Embedded Systems
 (SuiteE)", draft-campagna-suitee-04 (work in progress),
 October 2012.

 [I-D.cooper-ietf-privacy-requirements]
 Cooper, A., Farrell, S., and S. Turner, "Privacy
 Requirements for IETF Protocols", draft-cooper-ietf-
 privacy-requirements-01 (work in progress), October 2013.

 [I-D.greevenbosch-tls-ocsp-lite]
 Greevenbosch, B., "OCSP-lite - Revocation of raw public
 keys", draft-greevenbosch-tls-ocsp-lite-01 (work in
 progress), June 2013.

 [I-D.gutmann-tls-encrypt-then-mac]
 Gutmann, P., "Encrypt-then-MAC for TLS and DTLS", draft-
 gutmann-tls-encrypt-then-mac-05 (work in progress),
 December 2013.

Hartke & Tschofenig Expires August 18, 2014 [Page 17]

Internet-Draft DTLS 1.2 Profile for IoT February 2014

 [I-D.hummen-dtls-extended-session-resumption]
 Hummen, R., Gilger, J., and H. Shafagh, "Extended DTLS
 Session Resumption for Constrained Network Environments",
 draft-hummen-dtls-extended-session-resumption-01 (work in
 progress), October 2013.

 [I-D.ietf-lwig-guidance]
 Bormann, C., "Guidance for Light-Weight Implementations of
 the Internet Protocol Suite", draft-ietf-lwig-guidance-03
 (work in progress), February 2013.

 [I-D.ietf-lwig-terminology]
 Bormann, C., Ersue, M., and A. Keranen, "Terminology for
 Constrained Node Networks", draft-ietf-lwig-terminology-06
 (work in progress), December 2013.

 [I-D.ietf-lwig-tls-minimal]
 Kumar, S., Keoh, S., and H. Tschofenig, "A Hitchhiker’s
 Guide to the (Datagram) Transport Layer Security Protocol
 for Smart Objects and Constrained Node Networks", draft-
 ietf-lwig-tls-minimal-00 (work in progress), September
 2013.

 [I-D.ietf-tls-applayerprotoneg]
 Friedl, S., Popov, A., Langley, A., and S. Emile,
 "Transport Layer Security (TLS) Application Layer Protocol
 Negotiation Extension", draft-ietf-tls-applayerprotoneg-04
 (work in progress), January 2014.

 [I-D.pettersen-tls-version-rollback-removal]
 Pettersen, Y., "Managing and removing automatic version
 rollback in TLS Clients", draft-pettersen-tls-version-
 rollback-removal-02 (work in progress), August 2013.

 [I-D.sheffer-tls-bcp]
 Sheffer, Y. and R. Holz, "Recommendations for Secure Use
 of TLS and DTLS", draft-sheffer-tls-bcp-01 (work in
 progress), September 2013.

 [IANA-TLS]
 IANA, "TLS Cipher Suite Registry", http://www.iana.org/
 assignments/tls-parameters/
 tls-parameters.xhtml#tls-parameters-4, 2014.

 [RFC3552] Rescorla, E. and B. Korver, "Guidelines for Writing RFC
 Text on Security Considerations", BCP 72, RFC 3552, July
 2003.

Hartke & Tschofenig Expires August 18, 2014 [Page 18]

Internet-Draft DTLS 1.2 Profile for IoT February 2014

 [RFC4086] Eastlake, D., Schiller, J., and S. Crocker, "Randomness
 Requirements for Security", BCP 106, RFC 4086, June 2005.

 [RFC4492] Blake-Wilson, S., Bolyard, N., Gupta, V., Hawk, C., and B.
 Moeller, "Elliptic Curve Cryptography (ECC) Cipher Suites
 for Transport Layer Security (TLS)", RFC 4492, May 2006.

 [RFC5077] Salowey, J., Zhou, H., Eronen, P., and H. Tschofenig,
 "Transport Layer Security (TLS) Session Resumption without
 Server-Side State", RFC 5077, January 2008.

 [RFC5289] Rescorla, E., "TLS Elliptic Curve Cipher Suites with
 SHA-256/384 and AES Galois Counter Mode (GCM)", RFC 5289,
 August 2008.

 [RFC5934] Housley, R., Ashmore, S., and C. Wallace, "Trust Anchor
 Management Protocol (TAMP)", RFC 5934, August 2010.

 [RFC6090] McGrew, D., Igoe, K., and M. Salter, "Fundamental Elliptic
 Curve Cryptography Algorithms", RFC 6090, February 2011.

 [RFC6961] Pettersen, Y., "The Transport Layer Security (TLS)
 Multiple Certificate Status Request Extension", RFC 6961,
 June 2013.

 [RFC6973] Cooper, A., Tschofenig, H., Aboba, B., Peterson, J.,
 Morris, J., Hansen, M., and R. Smith, "Privacy
 Considerations for Internet Protocols", RFC 6973, July
 2013.

Authors’ Addresses

 Klaus Hartke
 Universitaet Bremen TZI
 Postfach 330440
 Bremen D-28359
 Germany

 Phone: +49-421-218-63905
 Email: hartke@tzi.org

Hartke & Tschofenig Expires August 18, 2014 [Page 19]

Internet-Draft DTLS 1.2 Profile for IoT February 2014

 Hannes Tschofenig
 ARM Ltd.
 110 Fulbourn Rd
 Cambridge CB1 9NJ
 Great Britain

 Email: Hannes.tschofenig@gmx.net
 URI: http://www.tschofenig.priv.at

Hartke & Tschofenig Expires August 18, 2014 [Page 20]

