
Network Working Group M. Piatek
Internet-Draft W. Chan
Intended status: Standards Track Google
Expires: July 10, 2014 January 6, 2014

 HTTP/2 Stream Dependencies
 draft-chan-http2-stream-dependencies-00

Abstract

 The existing HTTP/2 prioritization scheme relies purely on integer
 values to indicate priorities. This simple scheme misses critical
 support for priority grouping, and does not support other features
 like resource ordering. This draft proposes using stream
 dependencies to solve the lack of priority grouping, as well as
 provide other features.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on July 10, 2014.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as

Piatek & Chan Expires July 10, 2014 [Page 1]

Internet-Draft Stream Dependencies January 2014

 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. Motivation . 3
 3. Protocol Changes . 4
 3.1. HEADERS frame . 4
 3.2. PRIORITY frame . 5
 3.3. END_STREAM_ACK frame 6
 4. Protocol invariants and definitions 6
 5. Examples . 8
 5.1. Specifying an ordering of resource transfers and
 reacting to document parsing 10
 5.2. Servicing multiple tabs/users over a single HTTP/2
 connection . 13
 5.3. Server Push . 13
 6. Policy Considerations . 13
 6.1. Assigning and updating dependencies 13
 6.2. Server scheduling . 14
 6.3. Garbage collecting dependency information 14
 7. Security Considerations 15
 8. Informative References . 15
 Appendix A. Acknowledgements 15
 Authors’ Addresses . 15

Piatek & Chan Expires July 10, 2014 [Page 2]

Internet-Draft Stream Dependencies January 2014

1. Introduction

 This document proposes changes to HTTP/2 to support stream
 dependencies. During a pageload, the server uses dependencies to
 improve performance by allocating bandwidth capacity to the most
 important resource transfers first.

 The remainder of this document describes the motivation for
 dependencies, protocol changes to support them, and examples of how
 those mechanisms can be used by the browser. We conclude with a
 discussion of the client and server policies afforded by expressing
 dependency information in HTTP/2.

 (Note that flow control is the subject of a separate document and is
 out of scope here.)

2. Motivation

 Dependencies allow an HTTP/2 server to allocate bandwidth capacity
 efficiently in several common use-cases:

 Specifying an ordering of resource transfers
 Sharing bandwidth between resources transfer often degrades
 performance, e.g., when transferring two Javascript resources that
 cannot be executed until transfer is complete, or two video chunks
 that will be played back-to-back. In these circumstances, the
 browser may wish to specify an ordering --- HTML before script1.js
 before script2.js, for example, or video_chunk1 before
 video_chunk2.

 Reacting to document parsing
 Because the browser’s document parser blocks while waiting for
 script and style resource transfers to complete, many resource
 requests will be issued by simply scanning the tokenized HTML.
 (For more background, see [PRELOADSCANNER])

 As the document parser proceeds, it may learn of higher priority
 resources. For example, if a script a.js uses document.write to
 embed another script, b.js, the transfer of b.js should preempt
 other in-flight resource transfers since the receipt of b.js
 blocks page layout. Similarly, image transfers that will be
 styled with display: none should be deferred to prioritize visible
 content.

Piatek & Chan Expires July 10, 2014 [Page 3]

Internet-Draft Stream Dependencies January 2014

 Reacting to user behavior
 In the case of HTTP/2 proxies, a single TCP connection may
 multiplex several sites in several tabs. Changing tabs may
 reorder the relative importance of outstanding streams, e.g.,
 concurrent AJAX requests or page loads. Similarly, a proxy server
 may coalesce streams to a common origin onto a single connection.
 As the set of outstanding requests and users changes, the relative
 importance of each user’s streams may change as well.

 Server Push
 Server push can improve performance by eliminating round trips,
 but it may degrade performance if a pushed stream preempts a more
 important transfer. For example, a Javascript transfer may block
 layout and be high priority, or it may be a low-priority async
 request. Dependencies provide a hint to the server about the
 relative importance of pushed resources.

3. Protocol Changes

 Dependencies are expressed using the existing optional priority field
 the HEADERS frames and in PRIORITY frames. To ensure clients and
 servers have consistent view of active streams, we propose the
 FIN_ACK frame. The section concludes with a set of invariants that
 clients and servers must maintain when using these frames.

3.1. HEADERS frame

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |P| PriOrDep (31) |
 +-+---+
 | Header Block Fragment (*) ...
 +---+

 HEADERS Frame Payload

 The HEADERS frame defines the following flags:

 ORDERED (0x10): Bit 5 being set indicates that the dependency
 specified by PriOrDep is ordered. If this flag is unset, any
 dependency is treated as unordered.

 Here, the 4 octets previously used by the unused bit and 31 bit
 Priority field in the HEADERS frame are reinterpreted. The unused
 bit is now known as the P bit, and the 31 bit Priority field is now

Piatek & Chan Expires July 10, 2014 [Page 4]

Internet-Draft Stream Dependencies January 2014

 PriOrDep.

 P: A bit indicating whether the following PriOrDep bits specify a
 priority (P = 1) or a stream ID (P = 0) on which this new stream
 depends.

 PriOrDep: Depending on the value of P, either the priority of the new
 stream or a stream ID on which this new stream depends.

 The structure and semantics of the Header Block Fragment are
 unchanged.

 P is exclusive; a stream may be assigned a priority or a parent
 dependency upon creation, but not both. If P = 0 and PriOrDep
 indicates a dependency; the value MUST correspond to an active
 stream.

 Server push streams are assigned a priority or dependency id at the
 discretion of the server.

3.2. PRIORITY frame

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |P| PriOrDep (31) |
 +-+---+

 PRIORITY Frame Payload

 The PRIORITY frame defines the following flags:

 ORDERED (0x10): Bit 5 being set indicates that the dependency
 specified by PriOrDep is ordered. If this flag is unset, any
 dependency is treated as unordered.

 As in HEADERS, the Priority field is changed to be a P/PriOrDep field
 indicating an update to the 31 bit Dependency Id specified in the
 header. We relabel the typical Stream Id here as Dependency Id to
 distinguish it as a referent.

 To support batched updates of dependencies, an optional list of
 DependencyPriOrDep pairs with identical semantics may follow. The
 number of such pairs is determined by examining the frame length.

Piatek & Chan Expires July 10, 2014 [Page 5]

Internet-Draft Stream Dependencies January 2014

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |X| Dependency Id (31) |
 +---+
 |P| PriOrDep (31) |
 +-+---+

 DependencyPriOrDep

3.3. END_STREAM_ACK frame

 The END_STREAM_ACK frame has no payload. It is sent by a client to a
 server after receiving a frame with the END_STREAM flag set. The
 frame is used to ensure a consistent set of active streams between
 the client and the server. Consistency is required to maintain the
 protocol invariants described below.

4. Protocol invariants and definitions

 Each stream has at most one dependency An update to a stream’s
 dependent stream id replaces any existing dependency for the
 claimant. Specifying multiple dependency ids for a single stream
 in a PRIORITY frame is a protocol error.

 Each stream is depended on by at most one stream An update to a
 stream’s dependent stream id replaces any existing dependency on
 the target. Repeating a single dependency id in a PRIORITY frame
 is a protocol error.

 Each dependency has a type: ordered or unordered Ordered
 dependencies indicate a sequential transfer preference with
 respect to the dependent stream id. Unordered dependencies
 indicate a concurrent transfer preference for the range of the
 dependency list with unordered dependency links.

 For example, where <- indicates an ordered dependency and -
 indicates an unordered dependency

 a.htm <- a.js <- 1.png - 2.png

 indicates that a.html should preempt a.js which itself should
 preempt 1.png and 2.png, each of which should transfer
 concurrently, sharing capacity.

Piatek & Chan Expires July 10, 2014 [Page 6]

Internet-Draft Stream Dependencies January 2014

 All frames with the END_STREAM flag set MUST be explicitly
 acknowledged by clients To ensure that the client and server have an
 identical view of active stream ids when specifying dependencies,
 we require that clients explicitly acknowledge frames with the
 END_STREAM flag set by sending END_STREAM_ACK. Servers MUST
 retain dependency relationships for a stream until its
 END_STREAM_ACK is received (or the session is closed). Explicit
 acknowledgements obviate timeouts for garbage collecting
 dependency state and enable clients and servers to have a
 consistent view of dependency relationships.

 A dependency id MUST correspond to an active stream id An active
 stream id is one for which the client has not yet sent an
 END_STREAM_ACK frame. It is a protocol error to name a stream id
 as a dependency that is not active.

 If a server receives an END_STREAM_ACK for a stream X on which
 another stream Y depends, it SHOULD update the dependency pointer
 for Y to reflect the removal of X. The rules for updating
 dependencies are:

 1. If X does not depend on another stream id, Y inherits the
 priority of X.

 2. If X does depend on another stream id W, Y inherits the
 dependency pointer from X to W.

 For example, for dependencies

 a.htm <- a.js <- 1.png - 2.png

 where the server receives an END_STREAM_ACK for 1.png, the
 resulting dependencies would be

 a.htm <- a.js <- 2.png

 Of course, clients may reconfigure dependencies using whatever
 policy they wish by sending an explicit PRIORITY frame for stream
 Y before the END_STREAM_ACK for stream X.

 Updating dependencies when overwriting values is analogous to list
 insertion. If stream Y depends on X and a HEADERS or PRIORITY
 frame is received indicating a dependency on X for stream Z, Z
 replaces Y as X’s dependent, and Y’s dependency is updated to Z
 with the same ordering as it had to X. For example, if

 a.htm - 1.png

Piatek & Chan Expires July 10, 2014 [Page 7]

Internet-Draft Stream Dependencies January 2014

 and the server receives a HEADERS frame for a.js with an ordered
 dependency on a.htm, the result is

 a.htm <- a.js - 1.png

5. Examples

 The combination of dependencies and priorities suffices to express
 serialized as well as concurrent transfer schedules. But, how should
 the browser choose dependencies and priorities when making requests?
 This question is best answered quantitatively. As a starting point,
 we consider the following policy in our examples:

 1. Resource dependencies reflect parser-blocking order. Non-
 streaming resources are serialized; i.e., non-async scripts and
 styling.

 2. Progressive resources (e.g., images) are transferred concurrently
 and configured to depend on parser-blocking resource transfers.

 3. To ensure that the speculative parser can maintain enough in-
 flight requests to fill the pipe between the client and server,
 page HTML does not depend on other streams. (Although, a
 background tab should have lower priority.)

 Concretely, suppose a HTTP/2 connection is multiplexing multiple tabs
 from a user connected to a HTTP/2 proxy, with parent pointers and
 priorities as shown below. (P6, for example, indicates a priority of
 6.)

Piatek & Chan Expires July 10, 2014 [Page 8]

Internet-Draft Stream Dependencies January 2014

 +----------------+ +----------------+
 | | | |
 | Tab1.html (P6) | | Tab2.html (P6) |
 | | | |
 +----------------+ +----------------+
 ^ ^
 | |
 + +
 +----------------+ +----------------+
 | | | |
 | a.js | | a.jpg |
 | | | |
 +----------------+ +----------------+
 ^ |
 | |
 + |
 +----------------+ +----------------+
 | | | |
 | b.js | | b.jpg |
 | | | |
 +----------------+ +----------------+

 Figure 1: Multiple Tab Example

 To color in this example, suppose that Tab 1 is the foreground tab,
 loading in parallel with Tab 2 in the background. Thus, its
 relatively higher weight. a.js and b.js are scripts required for the
 first tab and should be transferred serially (as scripts are executed
 in the order they are declared in the document, and are not parsed
 until transfer completes.) Thus, a.js depends on b.js depends on
 tab1.htm. In the background tab, two image transfers share capacity
 as both can be rendered progressively. Thus, the dependency between
 b.jpg and a.jpg is unordered, indicating that writes for the
 tab2.html stream should be scheduled first, but capacity may be
 shared between the streams for a.jpg and b.jpg.

 When scheduling transfers, we consider a server that treats
 dependencies conceptually as lists. Recall that streams depend on
 and are depended on by at most one other stream. These can be
 treated as predecessor and successor ids. Stream writes are
 scheduled in two steps: 1) choosing a dependency list with at least
 one stream ready to write and 2) then selecting the stream to write
 by traversing the list. (An implementation might maintain ready
 queues of streams for efficiency, but we consider a simplified
 setting for clarity.)

 Because the streams associated with the transfers of tab1 and tab2
 have priorities rather than dependencies, they are always scheduled

Piatek & Chan Expires July 10, 2014 [Page 9]

Internet-Draft Stream Dependencies January 2014

 before any dependent streams. But, bandwidth allocation between
 dependency lists remains proportional as defined by the relative
 priority of tab1 and tab2. For example, if the transfer of tab2.htm
 is in progress and tab1.htm (now complete) is ready and selected by
 the scheduler, a.js will be scheduled before tab2.htm completes.
 This process proceeds until all transfers in a list have completed.

5.1. Specifying an ordering of resource transfers and reacting to
 document parsing

 We illustrate the need for both serial dependencies, concurrency, and
 reprioritization in these cases with a simple example.

 Suppose site.com has index.htm:

 <html>
 <body>
 <script src="a.js"></script>

 </body>

 with a.js:

 document.write(’<script src="b.js"></script>’);

 and b.js:

 document.write(’<div>blocker</div>’);

 How would this example page be transferred today? As the main HTML
 is received and parsed, a request for a.js will be issued and block
 the document parser. As the remaining HTML streams in, the
 speculative parser will issue requests for a.jpg and b.jpg in quick
 succession. Once a.js is received and executed, a request for b.js
 will be issued, which again blocks parsing until received. Visually:

Piatek & Chan Expires July 10, 2014 [Page 10]

Internet-Draft Stream Dependencies January 2014

 Client Server
 + +
 |+ GET index.htm |
 |+------------------->|
 | index.htm +|
 |<-------------------+|
 |+ GET a.js |
 |+------------------->|
 |+ GET a.jpg |
 |+------------------->|
 |+ GET b.jpg |
 |+------------------->|
 | a.js +|
 |<-------------------+|
 |+ GET b.js |
 |+------------------->|
 | a.jpg +|
 |<-------------------+|
 | b.jpg +|
 |<-------------------+|
 | b.js +|
 |<-------------------+|
 | |
 v v

 This transfer schedule is suboptimal. Page rendering will complete
 only when once b.js has completed, but receiving b.js is slowed by
 competition for bandwidth capacity for a.jpg and b.jpg, which do not
 block rendering.

 Ideally, the order resources are transferred would reflect the
 document parse order with bandwidth sharing only for progressive
 resources. More specifically, we want to receive: 1) index.htm, 2)
 a.js, and 3) b.js sequentially. After those critical transfers have
 completed, a.jpg and b.jpg should be transferred concurrently since
 they may be displayed progressively.

 Folding in the protocol mechanisms described above:

Piatek & Chan Expires July 10, 2014 [Page 11]

Internet-Draft Stream Dependencies January 2014

 Client Server | Scheduling
 + + |
 |+ 1: GET index.htm (P3) | |
 |+----------------------->| | index.htm (P3)
 | index.htm +| |
 |<-----------------------+| |====================================
 |+ 3: GET a.js (S1) | | +--------------+
 |+----------------------->| | |index.htm (P3)|
 |+ 5: GET a.jpg (S3) | | +--------------+
 |+----------------------->| | ^
 |+ 7: GET b.jpg (S5=) | | |---- a.js <- a.jpg - b.jpg
 |+----------------------->| |====================================
 | a.js +| |
 |<-----------------------+| |
 |+ 9: GET b.js (S1) | | +--------------+ +----+
 |+----------------------->| | |index.htm (P3)| <- |a.js|
 | b.js +| | +--------------+ +----+
 |<-----------------------+| | ^
 | a.jpg +| | |-------------------|
 |<-----------------------+| | |
 | b.jpg +| | |-b.js <- a.jpg - b.jpg
 |<-----------------------+| |
 | | |
 v v |

 In the figure, each resource request corresponds to a new HTTP/2
 stream with the form ID: request (PriOrDep). In more detail:

 o The HEADERS for the index.htm request indicates a default priority
 (3) and a stream id of 1.

 o The document parser is blocked once the external script a.js is
 parsed. At this point, the speculative parser looks ahead and
 creates new streams for a.jpg and b.jpg in parse order. a.jpg and
 b.jpg can be progressively rendered, so their transfer is
 concurrent (a.jpg has an ordered dependency on a.js, and b.jpg has
 an unordered dependency on a.jpg).

 o Once a.js completes, the document parser continues by executing
 a.js and inserting b.js via document.write(), again blocking
 document parsing on the receipt of b.js. At this point, b.js
 should preempt all other transfers since it’s a non-streaming
 resource that is blocking page rendering. To this end, the client
 creates the b.js stream which depends on a.js (or, equivalently,
 index.htm).

 This transfer schedule improves performance by serializing the
 transfer of resources on the critical path. The browser can ensure

Piatek & Chan Expires July 10, 2014 [Page 12]

Internet-Draft Stream Dependencies January 2014

 that resources needed immediately do not compete for bandwidth
 capacity with less important transfers. The pipe remains full, as a
 queue of requests is maintained in the dependency list, filling any
 idle capacity with useful data. Where we cannot make an informed
 scheduling decision, we hedge our bets with concurrent transfers by
 hinting that they are unordered and letting the server decide what
 makes the most sense --- as in the case of two above the fold images
 that can be rendered progressively.

5.2. Servicing multiple tabs/users over a single HTTP/2 connection

 As an illustration of this case, recall the example (Figure 1) from
 our straw-man design.

 Suppose concurrent tabs are loading with the dependencies shown.
 When a user changes tabs, the browser sends a PRIORITY frame updating
 the stream associated with tab2.htm to, say, priority 8. (A batched
 message might also reduce the priority of tab1.htm to weight 3.)
 Because bandwidth is allocated among streams with priorities before
 considering their dependents, increasing the priority of tab2.htm
 effectively shifts capacity for all resource transfers depending on
 tab1.htm to tab2.htm.

5.3. Server Push

 Push streams are assigned a priority or dependency at the discretion
 of the server. Typically, the Promised-Stream-ID would depend on the
 stream id carrying the PUSH_PROMISE frame. As information about
 resources needed for parsing is learned, the browser may update the
 dependency relationship by sending a PRIORITY message.

6. Policy Considerations

 Both priorities and stream dependencies are advisory hints. Browsers
 may adopt sophisticated policies or leave dependencies entirely
 unspecified. Similarly, servers may incorporate dependency hints
 into very sophisticated schedulers or ignore them entirely. The
 protocol mechanisms for encoding dependencies are designed to be
 simple. But, these mechanisms afford a very flexible set of policies
 depending on how browsers and servers use them. This section expands
 on several policy considerations.

6.1. Assigning and updating dependencies

 In our examples, we consider a browser that configures dependencies
 to reflect parser-blocking order for resources, updated as parsing
 continues. We expect this to improve performance, but browsers are

Piatek & Chan Expires July 10, 2014 [Page 13]

Internet-Draft Stream Dependencies January 2014

 free to deviate from this policy, and there may be good reasons to do
 so. For example, if the parser-blocking order is highly dynamic
 (e.g., in response to many JS events), the overhead of updating
 dependencies may not be worth the cost, particularly for small
 transfers. A sophisticated client may base dependency update
 decisions on content-length and/or RTT, restricting updates to only
 those streams likely to benefit from it. Quantitative implementation
 experience is needed to determine how best to assign and update
 dependencies.

6.2. Server scheduling

 A conformant server should respect the semantics of priorities and
 dependencies in its scheduling policy. Priorities indicate a
 preference for weighted scheduling (e.g., using a lottery scheduler
 [LOTTERYSCHEDULING]) among top-level streams; i.e., those created
 with a priority and not a dependency. Capacity should be shared
 among a sequence of streams with unordered dependencies.

 Server scheduling should reflect guidance from dependencies, but it
 need need not be strict. If all streams in a dependency tree have
 data available to write at the server, writes should be serviced
 first for top-level streams, then ordered dependents, with sharing
 among unordered streams. But, depedents that are ready to write
 should not starve to enforce a scheduling dependency. In other
 words, scheduling dependencies should not lead servers to waste
 capacity. If data is not available to continue writing the top-level
 stream, for example, a dependent ready to write should do so.

 Finally, we point out that servers may improve performance even if
 clients do not provide dependency information or priorities. For
 example, an intelligent server may inspect the content type of
 resources to make informed prioritization decisions on its own
 without client guidance. (However, respecting client-provided hints
 when available is likely to improve performance, as clients have
 detailed knowledge of parser dependencies.)

6.3. Garbage collecting dependency information

 HTTP/2 implementations must take care to protect themselves from the
 use of dependencies as a DoS vector. The protocol provides wide
 flexibility in this regard; servers are free to drop dependency or
 priority data at any time without sacrificing correctness.

 Typically, we envision servers will drop dependency information along
 with other stream state when an END_STREAM_ACK frame is received or
 the session is closed.

Piatek & Chan Expires July 10, 2014 [Page 14]

Internet-Draft Stream Dependencies January 2014

7. Security Considerations

 TODO

8. Informative References

 [LOTTERYSCHEDULING]
 Waldspurger, C. and W. Weihl, "Lottery scheduling:
 flexible proportional-share resource management", 1994,
 <http://dl.acm.org/citation.cfm?id=1267639>.

 [PRELOADSCANNER]
 Gentilcore, T., "The WebKit PreloadScanner", 2011, <http:/
 /gent.ilcore.com/2011/01/webkit-preloadscanner.html>.

Appendix A. Acknowledgements

 This document resulted from discussions amongst the SPDY team at
 Google. The authors merely took that discussion and edited this
 document. The individuals who contributed to those discussions
 include, but are not limited to: Roberto Peon, Hasan Khalil, Ryan
 Hamilton, Jim Roskind, Bryan McQuade, Chris Bentzel, Ilya Grigorik.

Authors’ Addresses

 Michael Piatek
 Google

 Email: piatek@chromium.org

 William Chan
 Google

 Email: willchan@chromium.org

Piatek & Chan Expires July 10, 2014 [Page 15]

