Net wor k Wor ki ng Group M Pi at ek

Internet-Draft W Chan
I ntended status: Standards Track Googl e
Expires: July 10, 2014 January 6, 2014

HTTP/ 2 St ream Dependenci es
draft-chan-http2-stream dependenci es- 00

Abstract

The existing HTTP/ 2 prioritization schene relies purely on integer
values to indicate priorities. This sinple scheme misses critica
support for priority grouping, and does not support other features
like resource ordering. This draft proposes using stream
dependencies to solve the lack of priority grouping, as well as
provi de ot her features.

Status of this Meno

This Internet-Draft is submtted in full conformance with the
provi sions of BCP 78 and BCP 79.

Internet-Drafts are working docunents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
wor ki ng docunments as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft docunents valid for a nmaxi mum of six nonths

and nay be updated, replaced, or obsol eted by other docunents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite themother than as "work in progress.”

This Internet-Draft will expire on July 10, 2014.
Copyright Notice

Copyright (c) 2014 | ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

This docunent is subject to BCP 78 and the | ETF Trust’s Lega
Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunment. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunment. Code Conponents extracted fromthis docunment nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as

Pi at ek & Chan Expires July 10, 2014 [Page 1]

Internet-Draft St ream Dependenci es January 2014

described in the Sinplified BSD License.

Tabl e of Contents

1.
2
3

7

8.

www

[e2e))]

I ntroduction .
Motivation . .
Pr ot ocol Changes .

1. HEADERS f r ane
.2. PRIOCRITY frame
.3. END STREAM ACK frane .

Prot ocol invariants and def|n|t|ons
Exanpl es .

. L SpeC|fy|ng an orderlng of reseu}ce irenefere end

reacting to docunent parsing

.2. Servicing multiple tabs/users over a S|ngle HTTP/2

connection .

.3. Server Push

Pol i cy Consi derations

.1. Assigning and updatlng dependenC|es
.2. Server scheduling
.3. Garbage collecting dependency |nfornat|on

Security Considerations
I nformative References

Appendi x A, Acknow edgenent s
Aut hors’ Addresses . ..

Pi at ek & Chan Expires July 10, 2014

OO UTA DWW

10

13
13
13
13
14
14
15

15
15

[Page 2]

Internet-Draft St ream Dependenci es January 2014

1.

I nt roducti on

Thi s docunment proposes changes to HTTP/2 to support stream
dependenci es. During a pagel oad, the server uses dependencies to
i mprove performance by allocating bandwi dth capacity to the nost

i mportant resource transfers first.

The remai nder of this docunent describes the notivation for
dependenci es, protocol changes to support them and exanples of how
t hose nechani sns can be used by the browser. W conclude with a

di scussion of the client and server policies afforded by expressing
dependency information in HITP/ 2

(Note that flow control is the subject of a separate docunent and is
out of scope here.)

Mot i vati on

Dependenci es allow an HTTP/ 2 server to allocate bandw dth capacity
efficiently in several common use-cases:

Speci fying an ordering of resource transfers
Shari ng bandwi dt h between resources transfer often degrades
performance, e.g., when transferring two Javascript resources that
cannot be executed until transfer is conplete, or two video chunks
that will be played back-to-back. 1n these circunstances, the
browser may wi sh to specify an ordering --- HTM. before scriptl.js
before script2.js, for exanple, or video _chunkl before
vi deo_chunk?2.

Reacting to docunent parsing
Because the browser’s docunent parser blocks while waiting for
script and style resource transfers to conplete, nmany resource
requests will be issued by sinply scanning the tokenized HTM.
(For nore background, see [PRELOADSCANNER])

As the docunent parser proceeds, it may learn of higher priority
resources. For exanple, if a script a.js uses docunent.wite to
enbed another script, b.js, the transfer of b.js should preenpt
other in-flight resource transfers since the receipt of b.js

bl ocks page layout. Sinmlarly, inmage transfers that will be
styled with display: none should be deferred to prioritize visible
cont ent.

Pi at ek & Chan Expires July 10, 2014 [Page 3]

Internet-Draft St ream Dependenci es January 2014

Reacting to user behavi or
In the case of HTTP/2 proxies, a single TCP connection may
mul ti pl ex several sites in several tabs. Changing tabs may
reorder the relative inportance of outstanding streans, e.g.
concurrent AJAX requests or page loads. Simlarly, a proxy server
may coal esce streans to a conmon origin onto a single connection
As the set of outstanding requests and users changes, the relative
i nportance of each user’s streans may change as wel |l .

Server Push
Server push can inprove performance by elimnating round trips,
but it nay degrade performance if a pushed stream preenpts a nore
i mportant transfer. For exanple, a Javascript transfer may bl ock
| ayout and be high priority, or it may be a lowpriority async
request. Dependencies provide a hint to the server about the
relative inportance of pushed resources.

3. Protocol Changes

Dependenci es are expressed using the existing optional priority field
t he HEADERS franmes and in PRIORITY frames. To ensure clients and
servers have consistent view of active streans, we propose the
FIN_ACK frame. The section concludes with a set of invariants that
clients and servers nust maintain when using these franes.

3. 1. HEADERS f r ane

0 1 2 3
01234567890123456789012345678901
B i s T T S T et S S T S I T s sl s ol ST S S S
| P| Pri OrDep (31) |
B +
| Header Bl ock Fragnent (*) ..
o o o eee o +

HEADERS Franme Payl oad

The HEADERS frane defines the follow ng flags:

ORDERED (0x10): Bit 5 being set indicates that the dependency
specified by PriODep is ordered. |If this flag is unset, any
dependency is treated as unordered.

Here, the 4 octets previously used by the unused bit and 31 bit

Priority field in the HEADERS frame are reinterpreted. The unused
bit is now known as the P bit, and the 31 bit Priority field is now

Pi at ek & Chan Expires July 10, 2014 [Page 4]

Internet-Draft St ream Dependenci es January 2014

Pri O Dep.

P: A bit indicating whether the following Pri O Dep bits specify a
priority (P =1) or a streamID (P = 0) on which this new stream
depends.

Pri Or Dep: Depending on the value of P, either the priority of the new
streamor a stream | D on which this new stream depends.

The structure and senmantics of the Header Bl ock Fragnent are
unchanged.

P is exclusive; a streammay be assigned a priority or a parent
dependency upon creation, but not both. If P =0 and Pri O Dep
i ndi cates a dependency; the value MJST correspond to an active
stream

Server push streans are assigned a priority or dependency id at the
di scretion of the server

3.2. PRICRITY frane

PRI ORI TY Frane Payl oad
The PRIORITY frane defines the follow ng fl ags:

ORDERED (0x10): Bit 5 being set indicates that the dependency
specified by PriODep is ordered. |If this flag is unset, any
dependency is treated as unordered.

As in HEADERS, the Priority field is changed to be a P/PriODep field
i ndi cating an update to the 31 bit Dependency Id specified in the
header. W relabel the typical Streamld here as Dependency Id to
distinguish it as a referent.

To support batched updates of dependencies, an optional |ist of

DependencyPri OrDep pairs with identical semantics may follow The
nunber of such pairs is determ ned by exam ning the frame | ength.

Pi at ek & Chan Expires July 10, 2014 [Page 5]

Internet-Draft St ream Dependenci es January 2014

0 1 2 3
01234567890123456789012345678901
B i S S T s i S T st i S S S S S S S S i
| X| Dependency 1d (31) [
o m oo oo +
| P| Pri OrDep (31) |
e +

DependencyPri O Dep
3.3. END_STREAM ACK frame

The END_STREAM ACK frame has no payload. It is sent by a client to a
server after receiving a frame with the END STREAM flag set. The
frane is used to ensure a consistent set of active streans between
the client and the server. Consistency is required to maintain the
protocol invariants described bel ow

4. Protocol invariants and definitions

Each stream has at npbst one dependency An update to a streanis
dependent streamid repl aces any existing dependency for the
claimant. Specifying nultiple dependency ids for a single stream
ina PRORTY frane is a protocol error

Each streamis depended on by at npbst one stream An update to a
streanmi s dependent streamid replaces any existing dependency on
the target. Repeating a single dependency id in a PRIORITY frane
is a protocol error.

Each dependency has a type: ordered or unordered Ordered
dependenci es indicate a sequential transfer preference with
respect to the dependent streamid. Unordered dependencies
i ndicate a concurrent transfer preference for the range of the
dependency list w th unordered dependency Iinks.

For exanple, where <- indicates an ordered dependency and -
i ndi cates an unordered dependency

a.htm<- a.js <- 1l.png - 2.png
indicates that a.htm should preenpt a.js which itself should

preenpt 1.png and 2. png, each of which should transfer
concurrently, sharing capacity.

Pi at ek & Chan Expires July 10, 2014 [Page 6]

Internet-Draft St ream Dependenci es January 2014

Al frames with the END STREAM fl ag set MJST be explicitly

acknow edged by clients To ensure that the client and server have an
identical view of active streamids when specifying dependenci es,
we require that clients explicitly acknow edge franes with the
END STREAM fl ag set by sendi ng END STREAM ACK. Servers MJST
retai n dependency rel ationships for a streamuntil its
END_STREAM ACK is received (or the session is closed). Explicit
acknow edgenents obviate tineouts for garbage collecting
dependency state and enable clients and servers to have a
consi stent view of dependency rel ati onshi ps.

A dependency id MJST correspond to an active streamid An active
streamid is one for which the client has not yet sent an
END STREAM ACK frane. It is a protocol error to name a streamid
as a dependency that is not active.

If a server receives an END STREAM ACK for a stream X on which
anot her stream Y depends, it SHOULD update the dependency pointer
for Y to reflect the renoval of X The rules for updating
dependenci es are:

1. |If X does not depend on another streamid, Y inherits the
priority of X

2. |If X does depend on another streamid W Y inherits the
dependency pointer fromX to W

For exanple, for dependencies

a.htm<- a.js <- 1.png - 2.png

where the server receives an END STREAM ACK for 1.png, the
resul ting dependenci es woul d be

a.htm<- a.js <- 2.png

O course, clients may reconfigure dependenci es usi ng what ever
policy they wish by sending an explicit PRIORITY franme for stream
Y before the END STREAM ACK for stream X

Updati ng dependenci es when overwiting values is anal ogous to |ist
insertion. |If streamyY depends on X and a HEADERS or PRIORITY
franme is received indicating a dependency on X for streamZ, Z
replaces Y as X' s dependent, and Y' s dependency is updated to Z
with the sane ordering as it had to X. For exanple, if

a.htm- 1.png

Pi at ek & Chan Expires July 10, 2014 [Page 7]

Internet-Draft St ream Dependenci es January 2014

5.

and the server receives a HEADERS frame for a.js with an ordered
dependency on a.htm the result is

a.htm<- a.js - 1.png

Exanpl es

The conbi nati on of dependencies and priorities suffices to express
serialized as well as concurrent transfer schedules. But, how should
the browser choose dependencies and priorities when maki ng requests?
This question is best answered quantitatively. As a starting point,
we consider the followi ng policy in our exanples:

1. Resource dependencies reflect parser-blocking order. Non-

streaming resources are serialized; i.e., non-async scripts and
styling.
2. Progressive resources (e.g., images) are transferred concurrently

and configured to depend on parser-bl ocking resource transfers.

3. To ensure that the specul ative parser can naintain enough in-
flight requests to fill the pipe between the client and server
page HTM. does not depend on other streams. (Although, a
background tab shoul d have | ower priority.)

Concretely, suppose a HTTP/ 2 connection is multiplexing multiple tabs
froma user connected to a HITP/2 proxy, with parent pointers and
priorities as shown below. (P6, for exanple, indicates a priority of
6.)

Pi at ek & Chan Expires July 10, 2014 [Page 8]

Internet-Draft St ream Dependenci es January 2014

T - + T - +
I I I I
| Tabl.htm (P6) | | Tab2.htm (P6) |
I I I I
T —_— + T —_— +

N N

+ +
o e e e e e e e a + o e e e e e e e a +
I _ I I _ I
I a.js I I a.jpg I
T - + T - +

A I

|

+ I
T —_— + T —_— +

I I I _
I b.js I I b.jpg |
o e e e e e e e a + o e e e e e e e a +

Figure 1: Miltiple Tab Exanpl e

To color in this exanple, suppose that Tab 1 is the foreground tab
loading in parallel with Tab 2 in the background. Thus, its
relatively higher weight. a.js and b.js are scripts required for the
first tab and should be transferred serially (as scripts are executed
in the order they are declared in the docunent, and are not parsed
until transfer conpletes.) Thus, a.js depends on b.js depends on
tabl. htm In the background tab, two image transfers share capacity
as both can be rendered progressively. Thus, the dependency between
b.jpg and a.jpg is unordered, indicating that wites for the
tab2. ht i stream should be schedul ed first, but capacity nmay be
shared between the streans for a.jpg and b.jpg.

When scheduling transfers, we consider a server that treats
dependenci es conceptually as lists. Recall that streans depend on
and are depended on by at nost one other stream These can be
treated as predecessor and successor ids. Streamwites are
scheduled in two steps: 1) choosing a dependency list with at |east
one streamready to wite and 2) then selecting the streamto wite
by traversing the list. (An inplenentation night maintain ready
queues of streams for efficiency, but we consider a sinplified
setting for clarity.)

Because the streans associated with the transfers of tabl and tab2
have priorities rather than dependencies, they are always schedul ed

Pi at ek & Chan Expires July 10, 2014 [Page 9]

Internet-Draft St ream Dependenci es January 2014

bef ore any dependent streams. But, bandwi dth allocation between
dependency lists remains proportional as defined by the relative
priority of tabl and tab2. For exanple, if the transfer of tab2. htm
is in progress and tabl. htm (now conplete) is ready and sel ected by
the scheduler, a.js will be schedul ed before tab2. ht m conpl et es.

This process proceeds until all transfers in a list have conpl eted.

5.1. Specifying an ordering of resource transfers and reacting to
docunent parsing

We illustrate the need for both serial dependencies, concurrency, and
reprioritization in these cases with a sinple exanple.

Suppose site.com has index. htm

<htm >

<body>

<script src="a.js"></script>

<ing src="a.jpg" w dth="100" hei ght="100"/>
<ing src="b.jpg" w dth="100" hei ght="100"/>
</ body>

with a.js:

docunent.write(’ <script src="b.js"></script>);

and b.js:

docunent . write(’ <di v>bl ocker</div>");

How woul d this exanpl e page be transferred today? As the main HTM
is received and parsed, a request for a.js will be issued and bl ock
t he document parser. As the remaining HTM. streans in, the

specul ative parser will issue requests for a.jpg and b.jpg in quick
succession. Once a.js is received and executed, a request for b.js
wi Il be issued, which again bl ocks parsing until received. Visually:

Pi at ek & Chan Expires July 10, 2014 [Page 10]

Internet-Draft St ream Dependenci es January 2014

Cient Server
+ +
| + GET index. htm |
R >|
| i ndex. ht m +|
I +|
|+ CET a.js [
I >|
| + GET a.jpg |
R >|
| + GET b.jpg I
I >|
I a.js +
I +|
| + GET b.js |
R >|
I a.jpg +|
I +|
I b.jpg +|
I +|
| b.js +|
I +
I I
% %

This transfer schedule is suboptimal. Page rendering will conplete

only when once b.js has conpleted, but receiving b.js is slowed by
conpetition for bandw dth capacity for a.jpg and b.jpg, which do not
bl ock rendering.

I deally, the order resources are transferred would reflect the
docunent parse order with bandwi dth sharing only for progressive
resources. Mre specifically, we want to receive: 1) index.htm 2)
a.js, and 3) b.js sequentially. After those critical transfers have
completed, a.jpg and b.jpg should be transferred concurrently since
they may be di spl ayed progressively.

Fol ding in the protocol mechani sms descri bed above:

Pi at ek & Chan Expires July 10, 2014 [Page 11]

Internet-Draft St ream Dependenci es January 2014

Cient Server | Schedul i ng
+ + |
| + 1: GET index.htm (P3) | |
[+--cmmm - >| | index.htm (P3)
[i ndex. ht m +| |
| <o]
|+ 3: CGET a.js (S1) [R +
[4----mmm e - >| | |index.htm (P3)]
| + 5: GET a.jpg (S3) | | +--------e-- - +
R L > [N
|+ 7: GET b.jpg (S5%) | |---- ajs <- ajpg - b.jpg
R attd B
I a.js + |
| <------mmmmee oo o
|+ 9: GET b.js (S1) | | +--------e-- - + +----+
R T T >| | |index.htm (P3)| <- |a.js|
| b.js +| [+ +o---+
I e +| | n
I a.jpg + | |---mmmmmmm s |
R I I _ _
| b.jpg + | |-b.js <- a.jpg - b.jpg
| <--mmmmmmme e Hoo
I (.
% % |

In the figure, each resource request corresponds to a new HITP/ 2
streamwith the formID request (PriODep). In nore detail:

(0]

The HEADERS for the index.htmrequest indicates a default priority
(3) and a streamid of 1.

The docunent parser is blocked once the external script a.js is
parsed. At this point, the specul ative parser | ooks ahead and
creates new streans for a.jpg and b.jpg in parse order. a.jpg and
b.jpg can be progressively rendered, so their transfer is
concurrent (a.jpg has an ordered dependency on a.js, and b.jpg has
an unordered dependency on a.jpg).

Once a.js conpl etes, the docunent parser continues by executing
a.js and inserting b.js via docunent.wite(), again blocking
docunent parsing on the receipt of b.js. At this point, b.js
shoul d preenpt all other transfers since it’'s a non-streaning
resource that is blocking page rendering. To this end, the client
creates the b.js stream which depends on a.js (or, equivalently,

i ndex. htm).

This transfer schedul e i nproves performance by serializing the
transfer of resources on the critical path. The browser can ensure

Pi at ek & Chan Expires July 10, 2014 [Page 12]

Internet-Draft St ream Dependenci es January 2014

that resources needed i mediately do not conpete for bandwi dth
capacity with less inportant transfers. The pipe remains full, as a
queue of requests is maintained in the dependency list, filling any
idle capacity with useful data. Where we cannot nake an inforned
schedul i ng deci si on, we hedge our bets with concurrent transfers by
hinting that they are unordered and letting the server decide what
makes the nobst sense --- as in the case of two above the fold inmages
that can be rendered progressively.

5.2. Servicing multiple tabs/users over a single HITTP/ 2 connection

As an illustration of this case, recall the exanple (Figure 1) from
our straw nan design

Suppose concurrent tabs are |oading with the dependenci es shown.

When a user changes tabs, the browser sends a PRICRITY frane updating
the stream associated with tab2. htmto, say, priority 8. (A batched
message mght also reduce the priority of tabl.htmto weight 3.)
Because bandwi dth is allocated anong streans with priorities before
considering their dependents, increasing the priority of tab2.htm
effectively shifts capacity for all resource transfers depending on
tabl.htmto tab2. htm

5.3. Server Push

Push streans are assigned a priority or dependency at the discretion
of the server. Typically, the Prom sed-Stream|D woul d depend on the
streamid carrying the PUSH PROM SE frane. As infornmation about
resources needed for parsing is |learned, the browser may update the
dependency rel ationship by sending a PRIORI TY nessage.

6. Policy Considerations

Both priorities and stream dependenci es are advisory hints. Browsers
may adopt sophisticated policies or | eave dependencies entirely
unspecified. Sinmilarly, servers may incorporate dependency hints
into very sophisticated schedulers or ignore thementirely. The

prot ocol mechani sns for encodi ng dependenci es are designed to be
sinmple. But, these nechanisns afford a very flexible set of policies
dependi ng on how browsers and servers use them This section expands
on several policy considerations.

6.1. Assigning and updating dependenci es
In our exanples, we consider a browser that configures dependencies

to reflect parser-blocking order for resources, updated as parsing
continues. W expect this to inprove performance, but browsers are

Pi at ek & Chan Expires July 10, 2014 [Page 13]

Internet-Draft St ream Dependenci es January 2014

free to deviate fromthis policy, and there may be good reasons to do
so. For exanple, if the parser-blocking order is highly dynamc
(e.g., in response to many JS events), the overhead of updating
dependenci es may not be worth the cost, particularly for snmal
transfers. A sophisticated client nmay base dependency update

deci sions on content-length and/or RTT, restricting updates to only
those streans likely to benefit fromit. Quantitative inplenentation
experience is needed to determ ne how best to assign and update
dependenci es.

6.2. Server scheduling

A conformant server should respect the semantics of priorities and
dependencies in its scheduling policy. Priorities indicate a
preference for weighted scheduling (e.g., using a lottery schedul er
[LOTTERYSCHEDULI NG) anong top-level streans; i.e., those created
with a priority and not a dependency. Capacity should be shared
anong a sequence of streans with unordered dependenci es.

Server scheduling should reflect guidance from dependencies, but it
need need not be strict. |If all streanms in a dependency tree have
data available to wite at the server, wites should be serviced
first for top-level streans, then ordered dependents, w th sharing
anong unordered streans. But, depedents that are ready to wite

shoul d not starve to enforce a scheduling dependency. |n other
wor ds, schedul i ng dependenci es should not |ead servers to waste
capacity. |If data is not available to continue witing the top-Ieve

stream for exanple, a dependent ready to wite should do so.

Finally, we point out that servers may inprove performance even if
clients do not provide dependency information or priorities. For
exanple, an intelligent server may inspect the content type of
resources to make infornmed prioritization decisions on its own

wi t hout client guidance. (However, respecting client-provided hints
when available is likely to inprove perfornmance, as clients have
detail ed know edge of parser dependencies.)

6.3. CGarbage collecting dependency information

HTTP/ 2 i npl ementati ons nust take care to protect thenselves fromthe
use of dependencies as a DoS vector. The protocol provides w de
flexibility in this regard; servers are free to drop dependency or
priority data at any tine w thout sacrificing correctness.

Typically, we envision servers will drop dependency information al ong

with other stream state when an END STREAM ACK frane is received or
the session is closed.

Pi at ek & Chan Expires July 10, 2014 [Page 14]

Internet-Draft St ream Dependenci es January 2014

7. Security Considerations

TODO

8. Informati ve References

[LOTTERYSCHEDULI NG
Wal dspurger, C. and W Weihl, "Lottery scheduling:
flexi ble proportional -share resource nanagenent", 1994,
<http://dl.acmorg/citation. cfnPi d=1267639>

[PRELOADSCANNER]
Gentilcore, T., "The WebKit Prel oadScanner"”, 2011, <http:/
/gent.ilcore.com 2011/ 01/ webki t - pr el oadscanner. ht m >
Appendi x A, Acknow edgenent s
Thi s docunment resulted from di scussi ons anongst the SPDY team at
Googl e. The authors merely took that discussion and edited this
docunent. The individuals who contributed to those di scussions
include, but are not linted to: Roberto Peon, Hasan Khalil, Ryan
Hanmi | ton, Ji m Roskind, Bryan McQuade, Chris Bentzel, llya Gigorik
Aut hors’ Addr esses

M chael Pi at ek
Googl e

Emai | : pi atek@hrom um org
W Iiam Chan
Googl e

Email: willchan@hrom umorg

Pi at ek & Chan Expires July 10, 2014 [Page 15]

