
Intarea Working Group R. Bonica
Internet-Draft Juniper Networks
Intended status: Informational C. Pignataro
Expires: February 13, 2015 Cisco Systems
 J. Touch
 USC/ISI
 August 12, 2014

 A Widely-Deployed Solution To The Generic Routing Encapsulation (GRE)
 Fragmentation Problem
 draft-bonica-intarea-gre-mtu-06

Abstract

 This memo describes how many vendors have solved the Generic Routing
 Encapsulation (GRE) fragmentation problem. The solution described
 herein is configurable. It is widely deployed on the Internet in its
 default configuration.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on February 13, 2015.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

Bonica, et al. Expires February 13, 2015 [Page 1]

Internet-Draft GRE Fragmentation August 2014

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 1.1. Terminology . 3
 2. Solutions . 4
 2.1. RFC 4459 Solutions 4
 2.2. A Widely-Deployed Solution 4
 3. Implementation Details 5
 3.1. General . 5
 3.2. GRE MTU (GMTU) Estimation and Discovery 5
 3.3. GRE Ingress Node Procedures 6
 3.3.1. Procedures Affecting the GRE Payload 6
 3.3.2. Procedures Affecting The GRE Deliver Header 7
 3.4. GRE Egress Node Procedures 7
 4. IANA Considerations . 8
 5. Security Considerations 8
 6. Acknowledgements . 8
 7. References . 9
 7.1. Normative References 9
 7.2. Informative References 9
 Authors’ Addresses . 9

1. Introduction

 Generic Routing Encapsulation (GRE) [RFC2784] [RFC2890] can be used
 to carry any network layer protocol over any network layer protocol.
 GRE has been implemented by many vendors and is widely deployed in
 the Internet.

 The GRE specification does not describe fragmentation procedures.
 Lacking guidance from the specification, vendors have developed
 implementation-specific fragmentation solutions. A GRE tunnel will
 operate correctly only if its ingress and egress nodes support
 compatible fragmentation solutions. [RFC4459] describes several
 fragmentation solutions and evaluates their relative merits.

 This memo reviews the fragmentation solutions presented in [RFC4459].
 It also describes how many vendors have solved the GRE fragmentation
 problem. The solution described herein is configurable, and has been
 widely deployed in its default configuration.

 This memo addresses point-to-point unicast GRE tunnels that carry
 IPv4, IPv6 or MPLS payloads. All other tunnel types are beyond the
 scope of this document.

Bonica, et al. Expires February 13, 2015 [Page 2]

Internet-Draft GRE Fragmentation August 2014

1.1. Terminology

 The following terms are specific to GRE and are taken from [RFC2784]:

 o GRE delivery header - an IPv4 or IPv6 header whose source address
 represents the GRE ingress node and whose destination address
 represents the GRE egress node. The GRE delivery header
 encapsulates a GRE header.

 o GRE header - the GRE protocol header. The GRE header is
 encapsulated in the GRE delivery header and encapsulates GRE
 payload.

 o GRE payload - a network layer packet that is encapsulated by the
 GRE header. The GRE payload can be IPv4, IPv6 or MPLS.
 Procedures for encapsulating IPv4 and IPv6 in GRE are described in
 [RFC2784] and [RFC2890]. Procedures for encapsulating MPLS in GRE
 are described in [RFC4023]. While other protocols may be
 delivered over GRE, they are beyond the scope of this document.

 o GRE delivery packet - A packet containing a GRE delivery header, a
 GRE header, and GRE payload.

 o GRE payload header - the IPv4, IPv6 or MPLS header of the GRE
 payload

 o GRE overhead - the combined size of the GRE delivery header and
 the GRE header, measured in octets

 The following terms are specific MTU discovery:

 o link MTU (LMTU) - the maximum transmission unit, i.e., maximum
 packet size in octets, that can be conveyed over a link. LMTU is
 a unidirectional metric. A bidirectional link may be
 characterized by one LMTU in the forward direction and another MTU
 in the reverse direction.

 o path MTU (PMTU) - the minimum LMTU of all the links in a path
 between a source node and a destination node. If the source and
 destination node are connected through an equal cost multipath
 (ECMP), the PMTU is equal to the minimum LMTU of all links
 contributing to the multipath.

 o GRE MTU (GMTU) - the maximum transmission unit, i.e., maximum
 packet size in octets, that can be conveyed over a GRE tunnel
 without fragmentation of any kind. The GMTU is equal to the PMTU
 associated with the path between the GRE ingress and the GRE
 egress, minus the GRE overhead

Bonica, et al. Expires February 13, 2015 [Page 3]

Internet-Draft GRE Fragmentation August 2014

 o Path MTU Discovery (PMTUD) - A procedure for dynamically
 discovering the PMTU between two nodes on the Internet. PMTUD
 procedures for IPv4 are defined in [RFC1191]. PMTUD procedures
 for IPv6 are defined in [RFC1981].

 The following terms are introduced by this memo:

 o fragmentable packet - An IPv4 packet with DF-bit equal to 0 and
 whose payload is larger than 64 bytes

 o ICMP Packet Too Big (PTB) message - an ICMPv4 [RFC0792]
 Destination Unreachable message with code equal to 4
 (fragmentation needed and DF set) or an ICMPv6 [RFC4443] Packet
 Too Big message

2. Solutions

2.1. RFC 4459 Solutions

 Section 3 of [RFC4459] identifies several tunnel fragmentation
 solutions. These solutions define procedures to be invoked when the
 tunnel ingress router receives a packet so large that it cannot be
 forwarded though the tunnel without fragmentation of any kind. When
 applied to GRE, these procedures are:

 1. Discard the incoming packet and send an ICMP PTB message to the
 incoming packet’s source.

 2. Fragment the incoming packet and encapsulate each fragment within
 a complete GRE header and GRE delivery header.

 3. Encapsulate the incoming packet in a single GRE header and GRE
 delivery header. Perform source fragmentation on the resulting
 GRE delivery packet.

 As per RFC 4459, Strategy 2) is applicable only when the incoming
 packet is fragmentable. Also as per RFC 4459, each strategy has its
 relative merits and costs.

2.2. A Widely-Deployed Solution

 Many vendors have implemented a configurable GRE fragmentation
 solution. In its default configuration, the solution behaves as
 follows:

 o When the GRE ingress node receives a fragmentable packet with
 length greater than the GMTU, it fragments the incoming packet and

Bonica, et al. Expires February 13, 2015 [Page 4]

Internet-Draft GRE Fragmentation August 2014

 encapsulates each fragment within a complete GRE header and GRE
 delivery header.

 o When the GRE ingress node receives a non-fragmentable packet with
 length greater than the GMTU, it discards the packet and send an
 ICMP PTB message to the packet’s source.

 o When the GRE egress node receives a GRE delivery packet fragment,
 it silently discards the fragment, without attempting to
 reassemble the GRE delivery packet to which the fragment belongs.

 In non-default configurations, the GRE ingress node can execute any
 of the procedures defined in RFC 4459.

 The solution described above is widely-deployed on the Internet in
 its default configuration.

3. Implementation Details

 This section describes how many vendors have implemented the solution
 described in Section 2.2.

3.1. General

 The GRE ingress nodes satisfy all of the requirements stated in
 [RFC2784].

3.2. GRE MTU (GMTU) Estimation and Discovery

 GRE ingress nodes support a configuration option that associates a
 GMTU with a GRE tunnel. By default, GMTU is equal to the MTU
 associated with next-hop toward the GRE egress node minus the GRE
 overhead.

 Typically, GRE ingress nodes further refine their GMTU estimate by
 executing PMTUD procedures. However, if an implementation supports
 PMTUD for GRE tunnels, it also includes a configuration option that
 disables PMTUD. This configuration option is required to mitigate
 certain denial of service attacks (see Section 5).

 The ingress node’s GMTU estimate will not always reflect the actual
 GMTU. It is only an estimate. When a tunnel’s GMTU changes, the
 tunnel ingress node will not discover that change immediately.
 Likewise, if the ingress node performs PMTUD procedures and tunnel
 interior nodes cannot deliver ICMP feedback to the tunnel ingress,
 GMTU estimates may be inaccurate.

Bonica, et al. Expires February 13, 2015 [Page 5]

Internet-Draft GRE Fragmentation August 2014

3.3. GRE Ingress Node Procedures

 This section defines procedures that GRE ingress nodes execute when
 they receive a packet whose size is greater than the relevant GMTU.

3.3.1. Procedures Affecting the GRE Payload

3.3.1.1. IPv4 Payloads

 By default, if the payload is fragmentable, the GRE ingress node
 fragments the incoming packet and encapsulates each fragment within a
 complete GRE header and GRE delivery header. Therefore, the GRE
 egress node receives several complete, non-fragmented delivery
 packets. Each delivery packet contains a fragment of the GRE
 payload. The GRE egress node forwards the payload fragments to their
 ultimate destination where they are reassembled.

 Also by default, if the payload is not fragmentable, the GRE ingress
 node discards the packet and sends an ICMPv4 Destination Unreachable
 message to the packet’s source. The ICMPv4 Destination Unreachable
 message code equals 4 (fragmentation needed and DF set). The ICMPv4
 Destination Unreachable message also contains an Next-hop MTU (as
 specified by [RFC1191]) and the next-hop MTU is equal to the GMTU
 associated with the tunnel.

 The GRE ingress node supports a non-default configuration option that
 invokes an alternative behavior. If that option is configured, the
 GRE ingress node fragments the delivery header. See Section 3.3.2
 for details.

3.3.1.2. IPv6 Payloads

 By default, the GRE ingress node discards the packet and send an
 ICMPv6 [RFC4443] Packet Too Big message to the payload source. The
 MTU specified in the Packet Too Big message is equal to the GMTU
 associated with the tunnel.

 The GRE ingress node supports a non-default configuration option that
 invokes an alternative behavior. If that option is configured, the
 GRE ingress node fragments the delivery header.See Section 3.3.2 for
 details.

3.3.1.3. MPLS Payloads

 By default, the GRE ingress node discards the packet. As it is
 impossible to reliably identify the payload source, the GRE ingress
 node does not attempt to send an ICMP PTB message to the payload
 source.

Bonica, et al. Expires February 13, 2015 [Page 6]

Internet-Draft GRE Fragmentation August 2014

 The GRE ingress node supports a non-default configuration option that
 invokes an alternative behavior. If that option is configured, the
 GRE ingress node fragments the delivery header. See Section 3.3.2.

3.3.2. Procedures Affecting The GRE Deliver Header

3.3.2.1. Tunneling GRE Over IPv4

 By default, the GRE ingress node does not fragment delivery packets.
 However, the GRE ingress node includes a configuration option that
 allows delivery packet fragmentation.

 By default, the GRE ingress node sets the DF-bit in the delivery
 header to 1 (Don’t Fragment). However, the GRE ingress node also
 supports a configuration option that invokes the following behavior:

 o when the GRE payload is IPv6, the DF-bit on the delivery header is
 set to 0 (Fragments Allowed)

 o when the GRE payload is IPv4, the DF-bit is copied from the
 payload header to the delivery header

 When the DF-bit on an IPv4 delivery header is set to 0, the GRE
 delivery packet can be fragmented by any node between the GRE ingress
 and the GRE egress.

 If the delivery packet is fragmented, it is reassembled by the GRE
 egress.

3.3.2.2. Tunneling GRE Over IPv6

 By default, the GRE ingress node does not fragment delivery packets.
 However, the GRE ingress node includes a configuration option that
 allows this.

 If the delivery packet is fragmented, it is reassembled by the GRE
 egress.

3.4. GRE Egress Node Procedures

 By default, the GRE egress node silently discards GRE delivery packet
 fragments, without attempting to reassemble the GRE delivery packets
 to which the fragments belongs.

 However, the GRE egress node supports a configuration option that
 allows it to reassemble GRE delivery packets.

Bonica, et al. Expires February 13, 2015 [Page 7]

Internet-Draft GRE Fragmentation August 2014

4. IANA Considerations

 This document makes no request of IANA.

5. Security Considerations

 In the GRE fragmentation solution described above, either the GRE
 payload or the GRE delivery packet can be fragmented. If the GRE
 payload is fragmented, it is typically reassembled at its ultimate
 destination. If the GRE delivery packet is fragmented, it is
 typically reassembled at the GRE egress node.

 The packet reassembly process is resource intensive and vulnerable to
 several denial of service attacks. In the simplest attack, the
 attacker sends fragmented packets more quickly than the victim can
 reassemble them. In a variation on that attack, the first fragment
 of each packet is missing, so that no packet can ever be reassembled.

 Given that the packet reassembly process is resource intensive and
 vulnerable to denial of service attacks, operators should decide
 where reassembly process is best performed. Having made that
 decision, they should decide whether to fragment the GRE payload or
 GRE delivery packet, accordingly.

 PMTU Discovery is vulnerable to two denial of service attacks (see
 Section 8 of [RFC1191] for details). Both attacks are based upon on
 a malicious party sending forged ICMPv4 Destination Unreachable or
 ICMPv6 Packet Too Big messages to a host. In the first attack, the
 forged message indicates an inordinately small PMTU. In the second
 attack, the forged message indicates an inordinately large MTU. In
 both cases, throughput is adversely affected. On order to mitigate
 such attacks, GRE implementations includes a configuration option to
 disable PMTU discovery on GRE tunnels. Also, they can include a
 configuration option that conditions the behavior of PMTUD to
 establish a minimum PMTU.

6. Acknowledgements

 The authors would like to thank Fred Baker, Fred Detienne, Jagadish
 Grandhi, Jeff Haas, Vanitha Neelamegam, John Scudder, Mike
 Sullenberger and Wen Zhang for their constructive comments. The
 authors also express their gratitude to Vanessa Ameen, without whom
 this memo could not have been written.

Bonica, et al. Expires February 13, 2015 [Page 8]

Internet-Draft GRE Fragmentation August 2014

7. References

7.1. Normative References

 [RFC0792] Postel, J., "Internet Control Message Protocol", STD 5,
 RFC 792, September 1981.

 [RFC1191] Mogul, J. and S. Deering, "Path MTU discovery", RFC 1191,
 November 1990.

 [RFC1981] McCann, J., Deering, S., and J. Mogul, "Path MTU Discovery
 for IP version 6", RFC 1981, August 1996.

 [RFC2784] Farinacci, D., Li, T., Hanks, S., Meyer, D., and P.
 Traina, "Generic Routing Encapsulation (GRE)", RFC 2784,
 March 2000.

 [RFC2890] Dommety, G., "Key and Sequence Number Extensions to GRE",
 RFC 2890, September 2000.

 [RFC4023] Worster, T., Rekhter, Y., and E. Rosen, "Encapsulating
 MPLS in IP or Generic Routing Encapsulation (GRE)", RFC
 4023, March 2005.

 [RFC4443] Conta, A., Deering, S., and M. Gupta, "Internet Control
 Message Protocol (ICMPv6) for the Internet Protocol
 Version 6 (IPv6) Specification", RFC 4443, March 2006.

7.2. Informative References

 [RFC4459] Savola, P., "MTU and Fragmentation Issues with In-the-
 Network Tunneling", RFC 4459, April 2006.

Authors’ Addresses

 Ron Bonica
 Juniper Networks
 2251 Corporate Park Drive Herndon
 Herndon, Virginia 20170
 USA

 Email: rbonica@juniper.net

Bonica, et al. Expires February 13, 2015 [Page 9]

Internet-Draft GRE Fragmentation August 2014

 Carlos Pignataro
 Cisco Systems
 7200-12 Kit Creek Road
 Research Triangle Park, North Carolina 27709
 USA

 Email: cpignata@cisco.com

 Joe Touch
 USC/ISI
 4676 Admiralty Way
 Marina del Rey, California 90292-6695
 USA

 Phone: +1 (310) 448-9151
 Email: touch@isi.edu
 URI: http://www.isi.edu/touch

Bonica, et al. Expires February 13, 2015 [Page 10]

Internet Engineering Task Force Z. Cao
Internet-Draft Q. Fu
Intended status: Experimental L. Deng
Expires: August 17, 2014 China Mobile
 February 13, 2014

 Data Plane Processing Acceleration Framework
 draft-cao-dataplane-acceleration-framework-00

Abstract

 It is getting popular to running data applications over general
 purpose hardware/chipsets, instead of customized and dedicated
 hardware/chipset. This way further decouples the software functions
 from the hardware. But moving data processing intensive applications
 to general purpose hardware is still challenging, although the
 industry has supplied some proprietary solutions. This document
 discusses the problems of data plane acceleration and proposes its
 framework.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 17, 2014.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Cao, et al. Expires August 17, 2014 [Page 1]

Internet-Draft DPA Framework February 2014

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 2. Requirements Language . 3
 3. DPA Framework . 3
 3.1. Framework . 3
 3.2. Components . 4
 3.3. Protocol Portfolio 5
 4. Existing Work - Intel DPDK 5
 5. Open Questions to IETF 7
 6. Acknowledgement . 8
 7. IANA Considerations . 8
 8. Security Considerations 8
 9. Informative References 8
 Authors’ Addresses . 8

1. Introduction

 The need of running network data processing functions over general
 purpose hardware/chipset (e.g., X86, PPC, etc) is multi-folded.

 1. Decoupling software functions from hardware. Traditional network
 devices are built upon dedicated or deep customized hardware and
 chipsets. This way restricts the flexibility of both service
 providers and network operators.

 2. Network Function Virtualization (NFV). NFV is an initiative of
 ETSI to virtualize the network functions to the overlay on top of
 the virtualization layer. It provides network elasticity in that
 the network functions can be scaled up/down according to the
 traffic load. NFV solutions often bundle with the virtual
 switches to provide VM-VM communications. Theses virtual
 switches are running on top of the servers that bear the network
 functions. Therefore, the need to accelerate the data processing
 efficiency is indispensable.

 3. Service Time-to-Market . Via the software and hardware
 decoupling, the speed to provide new services (TTM) is greatly
 enhanced. Since more and more services would like to have the
 most convenient time to market, they would also like to move data
 processing functions on top of general purpose hardware/chipsets.

Cao, et al. Expires August 17, 2014 [Page 2]

Internet-Draft DPA Framework February 2014

 4. Capex and Opex pressure. Having the network functions running
 over general purpose device will help operators to cut down their
 Capex and Opex.

 5. Cost-performance targets: software development, debug and
 integration is simplified; processor resource utilization is
 improved because the control plane and data plane can be
 distributed among cores with greater flexibility; development
 schedule risk is minimized and software maintenance is much
 easier with a common code base and a single development
 environment.

2. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

3. DPA Framework

 NF (Network Function): A functional building block within an
 operator’s network infrastructure, which has well-defined external
 interfaces and a well-defined functional behaviour. Note that the
 totality of all network functions constitutes the entire network and
 services infrastructure of an operator/service provider. In
 practical terms, a Network Function is today often a network node or
 physical appliance. [Quoted from ETSI NFV]

3.1. Framework

 The framework is depicted in Figure 1. Framework.

Cao, et al. Expires August 17, 2014 [Page 3]

Internet-Draft DPA Framework February 2014

 +--------------------+ +-+
 |Buffer Management | | |
 |Queue Management | |A|===== App
 |Memory Management |==|P|===== App
 |Flow Classification | |I|===== App
 |Other techniques | | |
 +--------------------+ +-+
 || || ||
 +--+
 | Hardware Abstraction Layer |
 +--+
 User Space

 || || || Kernel Space
 +--+
 | +--------------------------+ |
 | |Hardware Abstraction Layer| OS Kernel |
 | +--------------------------+ |
 +--+
 || || ||
 +--+
 | Platform Hardware |
 +--+

 Figure 1

3.2. Components

 The DPA may include the following components.

 Memory/Buffer Manager. The Memory/Buffer Manager is responsible for
 allocating NUMA-aware pools of objects in memory and balancing memory
 bandwidth utilization across the channels. Such management can
 significantly reduces the amount of time the operating system must
 spend allocating and de-allocating buffers.

 Queue Manager. The Queue Manager is responsible for queue
 scheduling. The ultimate goal of the Queue Manager is to allow
 different software components to process packets, while avoiding
 unnecessary wait times.

 Flow Classification. The Flow Classification component is an
 efficient mechanism for generating a hash used to quickly combine
 packets into flows, which enables faster processing and greater
 throughput.

 Poll Mode Drivers. The Poll Mode Drivers is capable of speeding up
 the packet pipeline for 1 GbE and 10 GbE ethernet controllers by

Cao, et al. Expires August 17, 2014 [Page 4]

Internet-Draft DPA Framework February 2014

 receiving and transmitting packets without the use of asynchronous,
 interrupt- based signaling mechanisms, which have a lot of overhead.

 Environment Abstraction Layer. The Environment Abstraction Layer
 provides an abstraction to platform-specific initialization code,
 which eases application porting effort. The EAL provides access to
 low-level resources (hardware, memory space, logical cores, etc.)
 through a generic interface that hides the environment specifics from
 the applications and libraries.

3.3. Protocol Portfolio

 On one hand, for the data plane, DPA should provide an efficient
 stack for common protocols utilized by various internet applications,
 including but not limited to:

 1. Link layer: Layer 2 switch, VLAN.

 2. Network layer: IPv4 and IPv6 for packet routing; MPLS and GRE/GTP
 for tunneled routing; IPsec, TLS/DTLS, NAT and QoS support for
 security and management features.

 3. Transport layer: SCTP/MPTCP as well as TCP and UDP, for multi-
 homing/stream traffic.

 4. Application layer: SSL termination for remote administration of
 virtualized device.

 On the other hand, for the control plane, DPA should provide an
 efficient stack for common protocols utilized by various network
 devices/ISPs for improved operation and Management, including:
 NetFlow, sFlow, IPFIX, SPAN, RSPAN for VM traffic monitory, LACP, STP
 and openflow for L2/L3 management.

4. Existing Work - Intel DPDK

 This section introduces DPDK [DPDK].

 Intel Data Plane Development Kit (DPDK) is a set of libraries and
 drivers for fast packet processing on x86 platforms. It runs mostly
 in Linux userland.The idea of DPDK has significantly advanced the
 concept of consolidation of data and control planes on a general
 purpose processor. Such idea greatly boosts packet processing
 performance and throughput by providing Intel architecture-optimized
 libraries to accelerate L3 forwarding, yielding performance that
 scales linearly with the number of cores, in contrast to native
 Linux.

Cao, et al. Expires August 17, 2014 [Page 5]

Internet-Draft DPA Framework February 2014

 The Intel DPDK contains a growing number of libraries, whose source
 code is available for developers to use and/or modify in a production
 network element. Likewise, there are various usecase examples, such
 as L3 forwarding, load balancing, and timers, that help reduce
 development time. The libraries can be used to build applications
 based on "run-to completion" or "pipeline" models, enabling the
 equipment provider’s application to maintain complete control.

 the Intel DPDK software is also available to aid in the development
 of I/O intensive applications running in a virtualized environment.
 This combination allows application developers to achieve near-native
 performance.

 The Intel DPDK provides a simple framework for fast packet processing
 in data plane application. Developers may use the code to understand
 some of the techniques employed, to build upon for prototyping, or to
 add their own protocol stacks. SR-IOV features are also used for
 hadware-based I/O sharing in I/O virtualization (IOV) mode.
 Therefore, it is possible to partition intel 82599 10 Gb Ethernet
 controller NIC resources logically and expose them to a VM as a
 virtual function

 Furthermore, 6WIND has developed a number of value-added enhancements
 to the Intel DPDK library that provide increased system functionality
 and performance compared to the baseline software. These value-added
 enhancements include the following aspects.

 Hige-performance software crypto support, implemented via the Intel
 Advanced Encryption Standard New Instructions (Intel AES-NI) in the
 Intel Xeon processor E5600 series and E5-2600 v2 series.

 Device monitoring and statistics functions,such as Linux Ethtool MTU
 support, full RX/TX queue statistics and CRC error statistics, which
 enable improved system-level profiling, analysis and debug.

 Support for additional Network Interface Cards(NICs), such as the
 Intel 82571EB Gibabit Ethernet controller, beyond those supported in
 the baseline Intel DPDK library.

 6WIND also provides a range of optional add-on extensions to the
 Intel DPDK designed to improve the cost/performance of both physical
 and virtual networking appliances while enabling the use of the intel
 DPDK in software-defined networks. These optional add-ons include:

 IPsec acceleration, achieved through integration of the Intel Multi-
 buffer Crypto for IPSec library;

Cao, et al. Expires August 17, 2014 [Page 6]

Internet-Draft DPA Framework February 2014

 Crypto acceleration via support of an external accelerator, the Intel
 Communications Chipset 89xx series, which is part of Intel’s next-
 generation communications platform,codenamed "Crystal Forest"

 Virtualization-related enhancements that maximize system performance
 by removing key I/O and communication bottlenecks include:

 1. I/O Virtualization(IOV), an industry-standard approach for
 increasing the performance of virtual network appliances by
 bypassing the virtual switch within the hypervisor, thus removing
 the I/O performance constraints imposed by the virtual switch.

 2. A virtual NIC(vNIC) driver that leverages communication between
 virtual machines via the virtual switch, enabling the efficient
 development and provisioning of systems with multiple VMs and
 significant East-West network traffic.

 3. For system that require the ultimate level of performance for
 East- West traffic between VMs, a VM-to-VM driver enables direct
 VM-to-VM communication, bypassing the virtual switch while
 remaining fully compatible with industry-standard hypervisors.

 These Intel DPDK enhancements and optional add-ons are maintained by
 6WIND as private branch, regularly synchronized with Intel’s on-going
 releases of the baseline library. They are delivered to customers
 either as a stand alone library or, for applications that also
 require high- performance packet processing software, and integrated
 within the 6WINDGate software solution.

 The 6WINDGate packet processing software is designed to solve the
 problem of exploiting the potential packet processing performance of
 multicore processor through a fast pth-based architecture, while
 incorporating a comprehensive set of high performance networking
 protocols fully optimized for intel Xeon processor-based platforms.

5. Open Questions to IETF

 IETF has been design Layer 2&3 protocols, and most of them are
 dedicated to data plane processing. The efficient implementation of
 protocol and tailoring them for specific hardware/chipsets have not
 been considered as main-stream IETF work (there are indeed some
 thread anyway, e.g. tailor for M2M). But to make IETF protocols as
 efficient as possible is definitely within the scope of IETF. Below
 are some discussion of open questions to IETF w.r.t. the data plane
 process acceleration topic.

 1. Importance. The game changing initiatives already started. NFV
 and further virtualization and decoupling practices are

Cao, et al. Expires August 17, 2014 [Page 7]

Internet-Draft DPA Framework February 2014

 happening. Before the questions have been ported to specialized
 hardware, but now the industry is changing the game. Do it need
 the standardization collaboration?

 2. Relevance. As we authors believe it, to make IETF protocols as
 efficient as possible is definitely within the scope of IETF.
 Although implementation techniques are mostly software
 engineering practice and have no business with any SDOs, the
 abstract API design and exposure of lower layer capability will
 definitely benefit the data plane processing efficiency.

 3. Necessity. Now that DPDK is already open source. But the
 experience in DPDK can feedback to IETF on how to improve the
 protocol design in promoting data plane acceleration
 effectiveness.

6. Acknowledgement

 This work was inspired by the DPDK open source project.

 Thank you for the discussion with Hui Deng, Dapeng Liu, and Lingli
 Deng on how to improve and promote this document.

7. IANA Considerations

 To be specified.

8. Security Considerations

 TBD.

9. Informative References

 [DPDK] "Packet Processing - Intel DPDK, https://01.org/packet-
 processing/overview/dpdk-detail", .

 [NFVE2E] "Network Functions Virtualisation: End to End
 Architecture, http://docbox.etsi.org/ISG/NFV/70-DRAFT/0010
 /NFV-0010v016.zip", .

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

Authors’ Addresses

Cao, et al. Expires August 17, 2014 [Page 8]

Internet-Draft DPA Framework February 2014

 Zhen Cao
 China Mobile
 Xuanwumenxi Ave. No. 32
 Beijing 100053
 China

 Email: zehn.cao@gmail.com, caozhen@chinamobile.com

 Qiao Fu
 China Mobile
 Xuanwumenxi Ave. No. 32
 Beijing 100053
 China

 Email: fuqiao@chinamobile.com

 Lingli Deng
 China Mobile
 Xuanwumenxi Ave. No. 32
 Beijing 100053
 China

 Email: denglingli@chinamobile.com

Cao, et al. Expires August 17, 2014 [Page 9]

DNS Extensions H. Rafiee
INTERNET-DRAFT Ciber AG
Updates RFC 2845 (if approved) M. v. Loewis
Intended Status: Standards Track C. Meinel
 Hasso Plattner Institute
Expires: August 15, 2014 February 15, 2014

 Secure DNS Authentication using CGA/SSAS Algorithm in IPv6
 <draft-rafiee-intarea-cga-tsig-07.txt>

Abstract

 This document describes a new mechanism that can be used to reduce
 the need for human intervention during DNS authentication and secure
 DNS authentication in various scenarios such as the DNS
 authentication of resolvers to stub resolvers, authentication during
 zone transfers, authentication of root DNS servers to recursive DNS
 servers, and authentication during the FQDN (RFC 4703) update.

 Especially in the last scenario, i.e., FQDN, if the node uses the
 Neighbor Discovery Protocol (NDP) (RFC 4861, RFC 4862), unlike the
 Dynamic Host Configuration Protocol (DHCP) (RFC 3315), the node has
 no way of updating his FQDN records on the DNS and has no means for a
 secure authentication with the DNS server. While this is a major
 problem in NDP-enabled networks, this is a minor problem in DHCPv6.
 This is because the DHCP server updates the FQDN records on behalf of
 the nodes on the network. This document also introduces a possible
 algorithm for DNS data confidentiality.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute working
 documents as Internet-Drafts. The list of current Internet-Drafts is
 at http://datatracker.ietf.org/drafts/current.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 15, 2014.

Rafiee, et al. Expires August 15, 2014 [Page 1]

INTERNET DRAFT TSIG using CGA in IPv6 February 15, 2014

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved. This document is subject to
 BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF
 Documents (http://trustee.ietf.org/license-info) in effect on the
 date of publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 4
 1.1. Problem Statement . 4
 2. Conventions used in this document 5
 3. Terminology . 6
 4. Algorithm overview . 7
 4.1. The CGA-TSIG DATA structure 7
 4.2. Generation of CGA-TSIG DATA 9
 5. Authentication during Zone Transfer 12
 5.1. Verification process 13
 6. Authentication during the FQDN or PTR Update 14
 6.1. Verification Process 15
 7. Authentication during Query Resolving (stub to recursive) . . 15
 7.1. Verification process 15
 8. Authentication during Query Resolving (Auth. to recursive) . 17
 9. No cache parameters available or SeND is not supported . . . 17
 10. How to obtain the IP address of resolvers 17
 11. CGA-TSIG Data confidentiality 17
 11.1. Generation of secret key 18
 11.2. DNS message generation 18
 11.3. CGA-TSIGe DATA generation 18
 11.4. Process of encrypted DNS message 18
 12. CGA-TSIG/CGA-TSIGe Applications 19
 12.1. IP Spoofing . 20
 12.2. DNS Dynamic Update Spoofing 20
 12.3. Resolver Configuration Attack 20
 12.4. Exposing Shared Secret 20
 12.5. Replay attack . 20
 12.6. Data confidentiality 21
 13. Security Considerations 21
 14. IANA Considerations . 22
 15. Appendix . 22

Rafiee, et al. Expires August 15, 2014 [Page 2]

INTERNET DRAFT TSIG using CGA in IPv6 February 15, 2014

 16. Acknowledgements . 24
 17. References . 24
 17.1. Normative . 24
 17.2. Informative . 25
 Authors’ Addresses . 26

Rafiee, et al. Expires August 15, 2014 [Page 3]

INTERNET DRAFT TSIG using CGA in IPv6 February 15, 2014

1. Introduction

 Transaction SIGnature (TSIG) [RFC2845] is a protocol that provides
 endpoint authentication and data integrity through the use of one-way
 hashing and shared secret keys in order to establish a trust
 relationship between two/group of hosts, which can be either a client
 and a server, or two servers. The TSIG keys, which are manually
 exchanged between a group of hosts, need to be maintained in a secure
 manner. This protocol is today mostly used to secure a Dynamic
 Update, or to give assurance to the slave name server that the zone
 transfer is from the original master name server and that it has not
 been spoofed by hackers. It does this by verifying the signature
 using a cryptographic key that is shared with the receiver.

 But, handling this shared secret in a secure manner and exchanging
 it, does not seem to be easy. This is especially true if the IP
 addresses are dynamic due to privacy reasons or the shared secret is
 exposed to attacker. To address the existing problems with TSIG, this
 document proposes the use of Cryptographically Generated Addresses
 (CGA) [RFC3972] or Secure Simple Addressing Scheme for IPv6
 Authoconfiguration (SSAS) as a new algorithm in the TSIG Resource
 Record (RR). CGA is an important option available in Secure Neighbor
 Discovery (SeND) [RFC3971], which provides nodes with the necessary
 proof of IP address ownership by providing a cryptographic binding
 between a host?s public key and its IP address without the need for
 the introduction of a new infrastructure.

 This document also addresses the DNS data confidentiality by using
 both asymmetric and symmetric cryptography as well as data integrity.
 This document updates the following sections in TSIG document

 - section 4.2: The server MUST not generate a signed response to an
 unsigned request => The server MUST not generate a signed response to
 an unsigned request, unless the Algorithm Name filed contains
 CGA-TSIG.

 - Section 4.5.2: It MUST include the client’s current time in the
 time signed field, the server’s current time (a u_int48_t) in the
 other data field, and 6 in the other data length field => It MUST
 include the client’s current time in the time signed field, the
 server’s current time (a u_int48_t) in the other data field, and if
 the Algorithm Name is CGA-TSIG, then add the length of this client?s
 current time to the total length of Other DATA field. The client?s
 current time in this case will be placed after the CGA-TSIG Data.

1.1. Problem Statement

 The authentication during any DNS query process is solely based on
 the source IP address when no secure mechanism is in use either

Rafiee, et al. Expires August 15, 2014 [Page 4]

INTERNET DRAFT TSIG using CGA in IPv6 February 15, 2014

 during the DNS update (zone transfer, FQDN update) or during the DNS
 query resolving process. This makes the DNS query process vulnerable
 to several types of spoofing attacks -- man in the middle, source IP
 spoofing, etc. One example is the problem that exists between a
 client and a DNS resolver. When a client sends a DNS query to a
 resolver, an attacker can send a response to this client containing
 the spoofed source IP address for this resolver. The client checks
 the resolver’s source IP address for authentication. If the attacker
 spoofed the resolver’s IP address, and if the attacker responds
 faster than the legitimate resolver, then the client’s cache will be
 updated with the attacker’s response. The client does not have any
 way to authenticate the resolver.

 If DNSSEC (RFC 6840) or TSIG, as a security mechanism is in use, then
 the problem would be the manual step required for the configuration.
 For instance, when a DNSSEC needs to sign the zone offline. The
 public key verification in DNSSEC creates chicken and eggs situation.
 In other words, the key for verifying messages should be obtained
 from DNSSEC server itself. This is why the query requestor needed to
 ask other DNS servers up to top level in root to be able to verify
 the key. If this does not happen, DNSSEC is vulnerable to IP spoofing
 attack. This problem could easily be handled by the use of CGA-TSIG
 as a means of providing the proof of IP address ownership.

 If TSIG is in use, the shared secret exchange is done offline.
 Currently there is little deployment of TSIG for resolver
 authentication with clients. One reason is that resolvers respond to
 anonymous queries and can be located in any part of the network. A
 second reason is that the manual TSIG process makes it difficult to
 configure each new client with the shared secret of the resolver.
 Another catastrophic problem with TSIG would be when this shared
 secret, that is shared between a group of hosts, leaks and makes it
 necessary to repeat this manual step. The reason is, that for each
 group of hosts there needs to be one shared secret and the
 administrator will need to manually add it to the DNS configuration
 file for each of these hosts. This manual process will need to be
 invoked in the case where one of these hosts is compromised and the
 shared secret is well known to the attacker. It will also have to be
 invoked in the case where any of these hosts needs to change their IP
 addresses, because of different reasons such as privacy issues, as
 explained in RFC 4941 [RFC4941], or when moving to another subnet
 within the same network, etc. Therefore, the problem that exists
 today with the authentication processes used in different scenarios
 is what this document addresses. The various scenarios include
 authentication during zone transfer, authentication of the nodes
 during DNS query resolving and authentication during updating PTR and
 FQDN (RFC 4703).

2. Conventions used in this document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

Rafiee, et al. Expires August 15, 2014 [Page 5]

INTERNET DRAFT TSIG using CGA in IPv6 February 15, 2014

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 In this document, these words will appear with that interpretation
 only when in ALL CAPS. Lower case uses of these words are not to be
 interpreted as carrying RFC 2119 significance.

 => This sign in the document should be interpreted as "change to".

3. Terminology

 The terms used in this document have the following standard meaning:

 - Name server: A server that supports DNS service.

 - Resolver/recursive DNS server: A resolver/recursive name server
 responds to queries where the query does not contain an entry for the
 node in its database. It first checks its own records and cache for
 the answer to the query and then, if it cannot find an answer there,
 it may recursively query name servers higher up in the hierarchy and
 then pass the response back to the originator of the query. This is
 known as a recursive query or recursive lookup.

 - Stub resolver: A specific kind of DNS resolver that is unable to
 resolve the queries recursively. So, it relies on a recursive DNS
 resolver to resolve the queries.

 - Authoritative: An authoritative name server provides the answers to
 DNS queries. For example, it would respond to a query about a mail
 server IP address or website IP address. It provides original,
 first-hand, definitive answers (authoritative answers) to DNS
 queries. It does not provide ’just cached’ answers that were obtained
 from another name server. Therefore it only returns answers to
 queries about domain names that are installed in its system
 configuration.

 There are two types of Authoritative Name Servers:

 1. Master server (primary name server): A master server stores the
 original master copies of all zone records. A host master is only
 allowed to change the master server?s zone records. Each slave server
 gets updated via a special automatic updating mechanism within the
 DNS protocol. All slave servers maintain identical copies of the
 master records.

 2. Slave server (secondary name server): A slave server is an exact
 replica of the master server. It is used to share the DNS server’s
 load and to improve DNS zone availability in cases where the master
 server fails. It is recommended that there be at least 2 slave
 servers and one master server for each domain name.

Rafiee, et al. Expires August 15, 2014 [Page 6]

INTERNET DRAFT TSIG using CGA in IPv6 February 15, 2014

 - Root DNS server: An authoritative DNS server for a specific root
 domain. For example, .com

 - Client: a client can be any computer (server, laptop, etc) that
 only supports stub DNS servers and not other DNS services. It can be
 a mail server, web server or a laptop computer.

 - Node: a node can be anything such as a client, a DNS server
 (resolver, authoritative) or a router.

 - Host: all nodes except routers

4. Algorithm overview

 The following sections explain the use of CGA or any other future
 algorithm in place of CGA for securing the DNS process by adding a
 CGA-TSIG data structure as an option to the TSIG Resource Record
 (RR).

4.1. The CGA-TSIG DATA structure

 The CGA-TSIG data structure SHOULD be added to the Other DATA section
 of the RDATA field in the TSIG Resource Record (RR) (see figures 1
 and 2). The DNS RRTYPE MUST be set to TSIG [RFC2845]. The RDATA
 Algorithm Name MUST be set to CGA-TSIG. The Name MUST be set to root
 (.).This is the smallest possible value that can be used. The MAC
 Size MUST be set to 0. A detailed explanation of the standard RDATA
 fields can be found in section 2.3 RFC 2845. This document focuses
 only on the new structure added to the Other DATA section. These new
 fields are CGA-TSIG Len and CGA-TSIG DATA. The TSIG RR is added to an
 additional section of the DNS message. If another algorithm is used
 in place of CGA for SeND, such as SSAS [4 , 5], then the CGA-TSIG Len
 will be the length for the parameters of this algorithm and CGA-TSIG
 DATA will consist of the parameters required for verification of that
 algorithm, like signature, public key, etc.

 +---------------------------------------+
 | Algorithm Name |
 | (CGA-TSIG) |
 +---------------------------------------+
 | Time Signed |
 | |
 +---------------------------------------+
 | Fudge |
 | |
 +---------------------------------------+
 | MAC Size |
 | |

Rafiee, et al. Expires August 15, 2014 [Page 7]

INTERNET DRAFT TSIG using CGA in IPv6 February 15, 2014

 +---------------------------------------+
 | Mac |
 | |
 +---------------------------------------+
 | Original ID |
 | |
 +---------------------------------------+
 | Error |
 | |
 +---------------------------------------+
 | OTHER LEN |
 | |
 +---------------------------------------+
 | OTHER DATA |
 | |
 +---------------------------------------+
 Figure 1 Modified TSIG RDATA

 The CGA-TSIG DATA Field and the CGA-TSIG Len will occupy the first
 two slots of Other DATA. Figure 2 shows the layout. Any extra
 options/data should be placed after CGA-TSIG field. CGA-TSIG Len is
 the length of CGA-TSIG DATA in byte. This value is multiple of 8.

 +---------------------------------------+
 | CGA-TSIG Len |
 | (1 byte) |
 +---------------------------------------+
 | CGA-TSIG DATA |
 | |
 +---------------------------------------+
 | Other Options |
 | |
 +---------------------------------------+
 Figure 2 Other DATA section of RDATA field

 CGA-TSIG DATA Field Name Data Type Notes
 --
 Algorithm type u_int16_t IANA numeric value of
 the algorithm
 for RSA 1.2.840.113549.1.1.1
 type u_int16_t Name of the algorithm used in
 SEND
 IP tag 16 octet the tag used to identify the IP
 address
 Parameters Len Octet the length of CGA parameters
 Parameters variable CGA parameters Section 3 RFC 3972
 Signature Len Octet the length of CGA signature
 Signature variable Section 3.2.1 This document
 old pubkey Len variable the length of old public key

Rafiee, et al. Expires August 15, 2014 [Page 8]

INTERNET DRAFT TSIG using CGA in IPv6 February 15, 2014

 field
 old pubkey variable Old public key in ASN.1 DER
 format (the same format as public key)
 old Signature Len variable the length of old signature field
 old Signature variable Old signature generated by old
 public key.

 Type indicates the Interface ID generation algorithm that was used in
 SeND (An Interface ID is the 64 leftmost bits of an IPv6 address.).
 This field allows for the use of future, optional algorithms in SeND.
 The default value for CGA is 1. The IP tag is a node’s old IP
 address. A client’s public key can be associated with several IP
 addresses on a server. The DNS server, or the DNS message verifier
 node, SHOULD store the IP addresses and the public keys so as to
 indicate their association to each other. If a client wants to add
 RRs to the server by using a new IP address, then the IP tag field
 will be set to binary zeroes. The server will then store the new IP
 address that was passed to it in storage. If the client wants to
 replace an existing IP address in a DNS server with a new one, then
 the IP tag field will be populated with the IP address which is to be
 replaced. The DNS server will then look for the IP address referenced
 by the IP tag stored in its storage and replace that IP address with
 the new one. This enables the client to update his own RRs using
 multiple IP addresses while, at the same time, giving him the ability
 to change IP addresses. If a node changes its public key in order to
 maintain privacy, then it MUST add the old public key to the old
 pubkey field. It MUST also retrieve the current time from Time Signed
 field, sign it using the old private key, and then add the digest
 (signature) to the old signature field. This enables the verifier
 node to authenticate a host with a new public key. The detailed
 verification steps are explained in sections 5.1, 6.1 and 7.1.

4.2. Generation of CGA-TSIG DATA

 In order to use CGA-TSIG as an authentication approach, some of the
 parameters need to be cached during IP address generation. If no
 parameters are available in cache, please see section 8. If the Type
 (section 4.1) is CGA, then the parameters that SHOULD be cached are
 the modifier, algorithm type, location of the public/private keys and
 the IP addresses of this host generated by the use of CGA.

 1. Obtain required parameters from cache.

 The CGA-TSIG algorithm obtains the old IP address, modifier, subnet
 prefix, collision count and public key from cache. It concatenates
 the old IP address with the CGA parameters, i.e., modifier, subnet
 prefix, collision count, public key (the order of CGA parameters are
 shown in section 3 RFC 3972). If the old IP address is not available,
 then CGA-TSIG must set the old IP address (IP tag) to zero.

Rafiee, et al. Expires August 15, 2014 [Page 9]

INTERNET DRAFT TSIG using CGA in IPv6 February 15, 2014

 Note: If the node is a DNS server (resolver or authoritative DNS
 server) which does not support SeND, but wants to use CGA-TSIG
 algorithm, then it is possible to use a script to generate the CGA
 parameters, which are needed to manually configure this server’s IP
 address. Then this server can make use these parameters for
 authentication purposes.

 +---------------------------------------+
 | Algorithm Name |
 | |
 +---------------------------------------+
 | Type |
 | |
 +---------------------------------------+
 | IP tag |
 | (16 bytes) |
 +---------------------------------------+
 | Parameter Len |
 | (1 byte) |
 +---------------------------------------+
 | Parameters |
 | (variable) |
 +---------------------------------------+
 | Signature Len |
 | (1 byte) |
 +---------------------------------------+
 | Signature |
 | (variable) |
 +---------------------------------------+
 | old pubkey Len |
 | (1 byte) |
 +---------------------------------------+
 | old pubkey |
 | (variable) |
 +---------------------------------------+
 | old Signature Len |
 | (1 byte) |
 +---------------------------------------+
 | old Signature |
 | (variable) |
 +---------------------------------------+
 Figure 3 CGA-TSIG DATA Field

 2. Generate signature

 For signature generation, The 128-bit CGA Message Type tag value for
 SeND that is 0x086F CA5E 10B2 00C9 9C8C E001 6427 7C08, is
 concatenated with the whole DNS message from Type to additional data
 sections (Please refer to figure 4 and figure 5) excluding the
 signature fields itself in the CGA-TSIG DATA is signed by using a RSA
 algorithm, by default, or any future algorithm used in place of RSA,

Rafiee, et al. Expires August 15, 2014 [Page 10]

INTERNET DRAFT TSIG using CGA in IPv6 February 15, 2014

 and the private key which was obtained from cache in the first step.
 This signature must be added to the signature field of the CGA-TSIG
 DATA. Time Signed is the same timestamp as is used in RDATA. This
 value is the number of seconds since 1 January 1970 in UTC obtained
 from the signature generator. This approach will prevent replay
 attacks by changing the content of the signature each time a node
 wants to send a DNS message. The format of DNS messages is explained
 in section 4.1.3 RFC 1035 [RFC1035]. Figure 6 shows this signature.

 +-----+------+--------+
 |Type |Length|Reserved|
 |1byte|1 byte| 1 byte |
 +---------------------+
 | Header |
 | 12 bytes |
 +---------------------+
 | Zone section |
 | variable length |
 +---------------------+
 | prerequisite |
 | variable length |
 +---------------------+
 | Update section |
 | variable length |
 +---------------------+
 | Additional Data |
 | variable length |
 +---------------------+
 Figure 4 DNS update message

 +-----+------+--------+
 |Type |Length|Reserved|
 |1byte|1 byte| 1 byte |
 +---------------------+
 | Header |
 | 12 bytes |
 +---------------------+
 | Question |
 | variable length |
 +---------------------+
 | Answer |
 | variable length |
 +---------------------+
 | Authority |
 | variable length |
 +---------------------+
 | Additional Data |
 | variable length |
 +---------------------+
 Figure 5 DNS Query message (section 4.1 RFC 1035)

Rafiee, et al. Expires August 15, 2014 [Page 11]

INTERNET DRAFT TSIG using CGA in IPv6 February 15, 2014

 +------------------+
 | CGA message tag |
 | 16 bytes |
 +------------------+
 | DNS message |
 | (excluding |
 | signature fields |
 |in CGA-TSIG DATA) |
 +------------------+
Figure 6 CGA-TSIG Signature content

 3. Generate old signature

 If the nodes generated new key pairs, then they need to add the old
 public key and message, signed by the old private key, to CGA-TSIG
 DATA. A node will retrieve the timestamp from Time Signed, will use
 the old private key to sign it, and then will add the content of this
 signature to the old signature field of CGA-TSIG DATA. This step MUST
 be skipped when the node did not generate new key pairs.

5. Authentication during Zone Transfer

 This section discusses the use of CGA-TSIG for the authentication of
 two DNS servers (a master and a slave). In the case of processing a
 DNS update for multiple DNS servers (authentication of two DNS
 servers), there are two possible scenarios with regard to the
 authentication process, which differs from that of the authentication
 of a node (client) with one DNS server. This is because of the need
 for human intervention.

 a. Add the DNS servers’ IP address to a slave configuration file

 A DNS server administrator should only manually add the IP address of
 the master DNS server to the configuration file of the slave DNS
 server. When the DNS update message is processed, the slave DNS
 server can authenticate the master DNS server based on the source IP
 address and then, prove the ownership of this address by use of the
 CGA-TSIG option from the TSIG RR. This scenario will be valid until
 the IP address in any of these DNS servers, changes.

 To automate this process, the sender’s public key of the DNS Update
 message must be saved on the other DNS server, after the source IP
 address has been successfully verified for the first time. In this
 case, when the sender generates a new IP address by executing the CGA
 algorithm using the same public key, the other DNS server can still
 verify it and add its new IP address to the DNS configuration file
 automatically.

Rafiee, et al. Expires August 15, 2014 [Page 12]

INTERNET DRAFT TSIG using CGA in IPv6 February 15, 2014

 b. Retrieve public/private keys from a third party Trusted Authority
 (TA)

 The message exchange option of SeND [RFC3971] may be used for the
 retrieval of the third party certificate. This may be done
 automatically from the TA by using the Certificate Path Solicitation
 and the Certificate Path Advertisement messages. Like in scenario b,
 the certificate should be saved on the DNS server for later use for
 the generation of its address or for the DNS update process. In this
 case, whenever any of these servers want to generate a new IP
 address, then the DNS update process can be accomplished
 automatically without the need for human intervention.

5.1. Verification process

 Sender authentication is necessary in order to prevent attackers from
 making unauthorized modifications to DNS servers through the use of
 spoofed DNS messages. The verification process executes the following
 steps:

 1. Verify the signature

 The signature contained in CGA-TSIG DATA should be verified. This can
 be done by retrieving the public key and signature from CGA-TSIG DATA
 and using this public key to verify the signature. If the
 verification process is successful, then step 2 will be executed. If
 the verification fails, then the message should be discarded without
 further action.

 2. Check the Time Signed

 The Time Signed value is obtained from TSIG RDATA and is called t1.
 The current system time is then obtained and converted to UTC time
 and is called t2. Fudge time is obtained from TSIG RDATA. If t1 is in
 the range of t2 and t2 minus/plus fudge (see formula 1) then step 3
 will be executed. Otherwise, the message will be considered a spoofed
 message and the message should be discarded without further action.
 The range is used in consideration of the delays that can occur
 during its transmission over TCP or UDP. Both times must use UTC time
 in order to avoid differences in time based on different geographical
 locations.

 (t1 - fudge) <= t2 <=(t1 + fudge) (1)

 3. Execute the CGA verification

 These steps are found in section 5 RFC 3972. If the sender of the DNS
 message uses another algorithm, instead of CGA, then this step
 becomes the verification step for that algorithm. If the verification
 process is successful, then step 4 will be executed. Otherwise the
 message will be discarded without further action.

Rafiee, et al. Expires August 15, 2014 [Page 13]

INTERNET DRAFT TSIG using CGA in IPv6 February 15, 2014

 4. Verify the source IP address

 The source IP address of the Update requester MUST be checked against
 the one contained in the DNS configuration file. If it is the same,
 then the Update Message should be processed, otherwise, step 5 will
 be executed.

 5. Verify the public key

 The DNS server checks whether or not the public key retrieved from
 CGA-TSIG DATA is the same as what was available in the storage where
 the public keys and IP addresses were saved. If no entry is found in
 storage for this public key, then the update will be rejected without
 further action. Otherwise, when the old public key length is not zero
 go to step 6.

 6. Verify the old public key

 If the old public key length is zero, then skip this step and discard
 the DNS update message without further action. If the old public key
 length is not zero, then the DNS server will retrieve the old public
 key from CGA-TSIG DATA and will check to see whether or not it is the
 same as what was saved in the DNS server’s storage where the public
 keys and IP addresses are stored. If it is the same, then step 6 will
 be executed, otherwise the message should be discarded without
 further action.

 7. Verify the old signature

 The old signature contained in CGA-TSIG DATA should be verified. This
 can be done by retrieving the old public key and the old signature
 from CGA-TSIG DATA and then using this old public key to verify the
 old signature. If the verification is successful, then the Update
 Message should be processed and the new public key should be replaced
 with the old public key in the DNS server. If the verification
 process fails, then the message should be discarded without further
 action.

6. Authentication during the FQDN or PTR Update

 Normally the DHCPv6 server will update the client’s RRs on their
 behalf in the scenario where SeND is used as a secure NDP, the nodes
 will need to do this process themselves unless there is stateless
 DHCPv6 server available. CGA-TSIG can be used to give nodes the
 ability of doing this process themselves. In this case the clients
 need to include the CGA-TSIG option in order to allow the DNS server
 to verify them. The verification process is the same as that
 explained in section except for step 4.

Rafiee, et al. Expires August 15, 2014 [Page 14]

INTERNET DRAFT TSIG using CGA in IPv6 February 15, 2014

6.1. Verification Process

 The verification steps are the same as those is explained in section
 5.1, but removing step 4 and modifying step 5.

 1- Verify the signature

 2- Check the Time Signed

 3- Execute the CGA verification

 4. Verify the public key

 The DNS server checks whether or not the public key retrieved from
 CGA-TSIG DATA is the same as what was available in the storage where
 the public keys and IP addresses were saved. If no entry is found in
 storage for this public key, and the FQDN or PTR is also not
 available in the DNS server, then the DNS server will store the
 public key of this node in his database and add this node’s PTR and
 FQDN. Otherwise if any PTR is available, and the node IP tag is
 empty, or there is currently another public key associated with the
 node’s FQDN, then the update will be rejected without further action.
 Otherwise go to step 5 when the old public key length is not zero.

 5- Verify the public key

 6- Verify the old public key

 7- Verify the old signature

7. Authentication during Query Resolving (stub to recursive)

 A DNS query request sent by a host, such as a client or a mail
 server, does not need to generate CGA-TSIG DATA because the resolver
 responds to anonymous queries. But the resolver’s response SHOULD
 contain the CGA-TSIG DATA field in order to enable this client to
 verify him. However, the client needs to include the TSIG RDATA and
 set the Algorithm type to CGA-TSIG. It MUST set the CGA-TSIG Len to
 zero. This allows the resolver to know when to include CGA-TSIG for
 verification process in client.

 In generation of the CGA-TSIG for a resolver, there is no need to
 include the IP tag. This is because resolvers do not usually have
 several IP addresses so the client does not need to keep several IP
 addresses for the same resolver.

7.1. Verification process

Rafiee, et al. Expires August 15, 2014 [Page 15]

INTERNET DRAFT TSIG using CGA in IPv6 February 15, 2014

 When a resolver responds to the host’s query request for the first
 time, the client saves its public key in a file. This allows the
 client to verify this resolver when it changes its IP address due to
 privacy or security concerns. The steps 2 and 3 of the verification
 process are the same as those steps explained in section 5.1. These
 steps are as follows:

 1. Verify the signature

 The signature contained in CGA-TSIG DATA should be verified. This can
 be done by retrieving the public key and signature from CGA-TSIG DATA
 and using this public key to verify the signature. If the
 verification process is successful, then step 2 will be executed. If
 the verification fails, then the message should be discarded without
 further action.

 2. Check the Time Signed

 3. Execute the CGA verification

 4. Verify the Source IP address

 If the resolver’s source IP address is the same as that which is
 known for the host, then step 5 will be executed. Otherwise the
 message SHOULD be discarded without further action.

 5. Verify the public key

 The host checks whether or not the public key retrieved from CGA-TSIG
 DATA matches any public key that was previously saved in the storage
 where the public keys and IP addresses of resolvers are saved. If
 there is a match, then the message is processed. If not, then step 5
 will be executed.

 5. Verify the old public key

 If the old public key length is zero, then skip this step and discard
 the DNS query response without further action. If the old public key
 length is not zero, then the host will retrieve the old public key
 from CGA-TSIG DATA and will check whether or not it is the same as
 what was saved in the host’s storage where the public keys and IP
 addresses are stored. If it is the same, then step 6 will be
 executed, otherwise the message should be discarded without further
 action.

 6. Verify the old signature

 The old signature contained in CGA-TSIG DATA should be verified. This
 can be done by retrieving the old public key and old signature from
 CGA-TSIG DATA and then using this old public key to verify the old
 signature. If the verification is successful, then the DNS Message
 should be processed and the new public key should be replaced with
 the old public key of the resolver in the host. If the verification

Rafiee, et al. Expires August 15, 2014 [Page 16]

INTERNET DRAFT TSIG using CGA in IPv6 February 15, 2014

 process fails, then the message should be discarded without further
 action.

8. Authentication during Query Resolving (Auth. to recursive)

 This verification step in the authentication of authoritative to
 recursive DNS server is the same as that explained in section 7.1. In
 this case the recursive DNS server does not need to generate CGA-TSIG
 DATA, but the root DNS server does need to include it in order to
 enable the recursive DNS server to verify it. The recursive DNS
 server needs to include the TSIG RDATA and set the Algorithm type to
 CGA-TSIG. It MUST set the CGA-TSIG Len to zero. This allows the root
 DNS server to know when to include CGA-TSIG for verification process
 in client.

9. No cache parameters available or SeND is not supported

 In the case where there are no cache parameters available during the
 IP address generation, there are then two scenarios that come into
 play here. In the first scenario there is the case where the sender
 of a DNS message needs to generate a key pair and generate the
 CGA-TSIG data structure as explained in section 4. The node SHOULD
 skip the first section of the verification processes explained in
 section 5.1 , section 6.1 and section 7.1.

 In the second scenario, as explained in section 4.2 (step 1), it is
 not necessary for the server to support the SeND or CGA algorithm.
 The DNS administrator can make a one-time use of a CGA script to
 generate the CGA parameters and then manually configure the IP
 address of this DNS server. Then later, this DNS server can use those
 values as a means for authenticating other nodes. The verifier nodes
 also do not necessarily need to support SeND. They only need to
 support CGA-TSIG.

10. How to obtain the IP address of resolvers

 Nodes can obtain the IP address of resolvers from the DHCPv6 server
 (that will not be secure) or from a DNS option of Router
 Advertisement message [RFC6106] after authenticating the router via a
 trusted authority. The IP addresses can be generated using CGA, SSAS
 or other mechanisms.

11. CGA-TSIG Data confidentiality

 One possible solution to provide the DNS server with data

Rafiee, et al. Expires August 15, 2014 [Page 17]

INTERNET DRAFT TSIG using CGA in IPv6 February 15, 2014

 confidentiality during DNS update or other DNS query processes is the
 use of symmetric encryption with CGA-TSIG that is called CGA-TSIGe.
 In this case, the node MUST set the Algorithm type in TSIG RDATA to
 CGA-TSIGe.

11.1. Generation of secret key

 To encrypt the DNS message using a symmetric algorithm for
 performance purposes, first, a node needs to retrieve the public key
 of the DNS server. It is possible to use the current DNSKEY RR (RFC
 3757) to send the public key of the DNS server. When the client wants
 to update any records on the DNS server, it first sends a DNS message
 and asks for the public key of the DNS server. DNS server then
 answers to this query and includes the public key contained in the
 DNSKEY RR with the SEP flag set to zero. This is done to indicate
 that it is not the zone key. The DNS server SHOULD include CGA-TSIG
 DATA so that the client can verify its IP address. In this case,
 there will be a binding between DNS server?s public key and its IP
 address. After a successful verification, the node then generates a
 16 byte random number and calls it a secret key. It encrypts this
 secret key using the DNS server public key. This allows only the DNS
 server to decrypt this secret key. In this case, the node sets the
 MAC in TSIG RDATA to the digest of secret key and set the MAC Size to
 the length of this digest. The DNS server knows what to do with MAC
 field from the Algorithm type in TSIG. If it is CGA-TSIGe, then it
 looks for an encrypted secret key.

11.2. DNS message generation

 The node MUST encrypt all DNS message sections that required
 protections using the secret key generated in last section and AES
 symmetric algorithm. It excludes TSIG RDATA (That usually added in
 the additional section of the DNS messages) from the encryption text.
 They are explained in figure 4 and figure 5 of section 4.2 of this
 document.

11.3. CGA-TSIGe DATA generation

 The CGA-TSIGe generation is the same as that explained in section 4.2
 of this document. But only the Algorithm type MUST be set to
 CGA-TSIGe.

11.4. Process of encrypted DNS message

 When the DNS server receives the message from any node with TSIG

Rafiee, et al. Expires August 15, 2014 [Page 18]

INTERNET DRAFT TSIG using CGA in IPv6 February 15, 2014

 RDATA Algorithm type set to CGA-TSIGe, it execute the following
 steps:

 1- Retrieve the secret key

 The DNS server retrieves the secret key from MAC field. It then
 decrypts this secret key using its own private key.

 2- Decrypt the DNS message

 The DNS server decrypts the DNS server message using this secret key
 and the symmetric algorithm, which by default is AES.

 Then the DNS server can starts the verification process as explained
 in section 5.1, 6.1, 7.1 of this document.

12. CGA-TSIG/CGA-TSIGe Applications

 The purpose of CGA-TSIG [7] is to minimize the amount of human
 intervention required to accomplish shared secret or key exchange
 and, as a byproduct, to reduce the process’s vulnerability to attacks
 introduced by human errors (during changing the DNS configuration)
 when Secure Neighbor Discovery (SeND) is used for addressing purposes
 or when SeND is not available for use.

 As explained in a prior section, CGA-TSIG can be used in different
 scenarios. For the FQDN update scenario CGA-TSIG is useful in dynamic
 networks where the nodes want to change their IP addresses frequently
 in order to maintain privacy. If the Dynamic Host Configuration
 Protocol (DHCP) is in use, then the DHCP server can do this update on
 behalf of the nodes in this network on a DNS server but in Neighbor
 Discovery Protocol (NDP), there is no feature available that allows
 the host security update process for its own FQDN. CGA-TSIG can be a
 solution.

 For the resolver scenario, usually the resolver can add the TSIG
 Resource Record (RR) to the DNS query response and use the CGA-TSIG
 algorithm in order to permit a useful authentication of the result.
 CGA-TSIG assures the client that the query response comes from the
 true originator and not from an attacker. It also ensures the
 integrity of the data by signing the data.

 There are several types of attack that CGA-TSIG can prevent. Here we
 will evaluate some of them. The use of CGA-TSIG will also reduce the
 number of messages needed in exchange between a client and a server
 in order to establish a secure channel. To exchange the shared secret
 between a DNS resolver and a client, when TSIG is used, a minimum of
 four messages are required for the establishment of a secure channel.
 Modifying RFC 2845 to use CGA-TSIG will decrease the number of
 messages needed in this exchange. The messages used in RFC 2930 (TKEY
 RR) are not needed when CGA-TSIG is used.

Rafiee, et al. Expires August 15, 2014 [Page 19]

INTERNET DRAFT TSIG using CGA in IPv6 February 15, 2014

12.1. IP Spoofing

 During the DNS Update process or the query resolving process it is
 important that both communicating parties know that the one that they
 are communicating with is the actual owner of that IP address and
 that the messages are not being sent from a spoofed IP address. This
 can be accomplished by the use of the CGA algorithm which utilizes
 the node for IP address verification of other nodes.

12.2. DNS Dynamic Update Spoofing

 Dynamic Update Spoofing is eliminated because the signature contains
 both the CGA parameters and the DNS update message. This will offer
 proof of the sender’s IP address ownership (CGA parameters) and the
 validity of the update message.

12.3. Resolver Configuration Attack

 When using CGA-TSIG, the DNS server, or the client, would not need
 further configuration. This would reduce the possibility of human
 errors being introduced into the DNS configuration file. Since this
 type of attack is predicated on human error, the chances of it
 occurring, when this extension is used, are minimized.

12.4. Exposing Shared Secret

 Using CGA-TSIG will decrease the number of manual steps required in
 generating the new shared secret and in exchanging it among the hosts
 where the old shared secret was shared between them for updating
 purposes. This manual step is required after a leakage has occurred
 of the shared secret to an attacker via any of these hosts.

12.5. Replay attack

 Using the Time Signed value in the signature modifies the content of
 the signature each time the node generates and sends it to the DNS
 server. If the attacker tries to spoof this value with another
 timestamp, to show that the update message is current, the DNS server
 checks this message by verifying the signature. In this case, the
 verification process will fail thus also preventing the replay
 attack.

Rafiee, et al. Expires August 15, 2014 [Page 20]

INTERNET DRAFT TSIG using CGA in IPv6 February 15, 2014

12.6. Data confidentiality

 Encrypting the whole DNS message will avoid the attacker to know the
 content of DNS messages. This will avoid zone walking and many other
 attacks on DNS RRs. This also provides the higher privacy for hosts
 that has DNS records.

13. Security Considerations

 The approach explained in this draft, CGA-TSIG, is a solution for
 securing DNS messages from spoofing type attacks like those explained
 in section 3.

 A problem that may arise here concerns attacks against the CGA
 algorithm. In this section we will explain the possibility of such
 attacks against CGA [5] and explain the available solutions that we
 considered in this draft.

 a) Discover an Alternative Key Pair Hashing of the Victim’s Node
 Address

 In this case an attacker would have to find an alternate key pair
 hashing of the victim?s address. The probability for success of this
 type of attack will rely on the security properties of the underlying
 hash function, i.e., an attacker will need to break the second
 pre-image resistance of that hash function. The attacker will perform
 a second pre-image attack on a specific address in order to match
 other CGA parameters using Hash1 and Hash2. The cost of doing this is
 (2^59+1) * 2^(16*1). If the user uses a sufficient security level, it
 will be not feasible for an attacker to carry out this type of attack
 due to the cost involved. Changing the IP address frequently will
 also decrease the chance for this type of attack succeeding.

 b) DoS to Kill a CGA Node

 Sending a valid or invalid CGA signed message with high frequency
 across the network can keep the destination node(s) busy with the

Rafiee, et al. Expires August 15, 2014 [Page 21]

INTERNET DRAFT TSIG using CGA in IPv6 February 15, 2014

 verification process. This type of DoS attack is not specific to CGA,
 but it can be applied to any request-response protocol. One possible
 solution ,to mitigate this attack, is to add a controller to the
 verifier side of the process to determine how many messages a node
 has received over a certain period of time from a specific node. If a
 determined threshold rate is exceeded, then the node will stop
 further receipt of incoming messages from that node.

 c) CGA Privacy Implication

 Due to the high computational complexity necessary for the creation
 of a CGA, it is likely that once a node generates an acceptable CGA
 it will continue its use at that subnet. The result is that nodes
 using CGAs are still susceptible to privacy related attacks. One
 solution to these types of attacks is setting a lifetime for the
 address as explained in RFC 4941.

14. IANA Considerations

 The IANA has allowed for choosing new algorithm(s) for use in the
 TSIG Algorithm name. Algorithm name refers to the algorithm described
 in this document. The requirement to have this name registered with
 IANA is specified.

 In section 4.1, Type should allow for the use of future optional
 algorithms with regard to SeND. The default value for CGA might be 1.
 Other algorithms would be assigned a new number sequentially. For
 example, a new algorithm called SSAS [4,5] could be assigned a value
 of 2.

 IANA also needs to define a numeric algorithm number for ECC. The
 similar way that is defined for RSA.

15. Appendix

 - A sample key storage for CGA-TSIG

 create table cgatsigkeys (

 id INT auto_increment,

 pubkey VARCHAR(300),

 primary key(id)

);

Rafiee, et al. Expires August 15, 2014 [Page 22]

INTERNET DRAFT TSIG using CGA in IPv6 February 15, 2014

 create table cgatsigips (

 id INT auto_increment,

 idkey INT,

 IP VARCHAR(20),

 FOREIGN KEY (idkey) REFERENCES cgatsigkeys(id)

 primary key(id)

);

 CGA-TSIG tables on mysql backend database

 - a sample format of stored parameters in the node

 For example, the modifier is stored as bytes and each byte might be
 separated by a comma (for example : 284,25,14,...). Algorithmtype is
 the algorithm used in signing the message. Zero is the default
 algorithm for RSA. Secval is the CGA Sec value that is, by default,
 one. GIP is the global IP address of this node (for example:
 2001:abc:def:1234:567:89a). oGIP is the old IP address of this node,
 before the generation of the new IP address. Keys contains the path
 where the CGA-TSIG algorithm can find the PEM format used for the
 public/private keys (for example: /home/myuser/keys.pem).

 <?xml version="1.0" encoding="UTF-8"?>

 <Details>

 <CGATSIG>

 <modifier value=""/>

 <algorithmtype value="1.2.840.113549.1.1.1"/>

 <secval value="1"/>

 <GIP value=""/>

 <oGIP value=""/>

 <Keys value=""/>

 </CGATSIG>

 </Details>

Rafiee, et al. Expires August 15, 2014 [Page 23]

INTERNET DRAFT TSIG using CGA in IPv6 February 15, 2014

 XML file contains the cached DATA

16. Acknowledgements

 The continual improvement of this document is as a result of the
 helps and assistance of its supporters.

 The authors would like to thank all those people who directly helped
 in improving this draft and all supporters of this draft, especially
 Ralph Droms, Andrew Sullivan, Ted Lemon, Brian Haberman. The authors
 would like also to special acknowledge the supports of NLnet Labs
 director and researchers; Olaf Kolkman, Matthijs Mekking and their
 master student Marc Buijsman.

17. References

17.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to
 Indicate Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3972] Aura, T., "Cryptographically Generated Addresses
 (CGA)," RFC 3972, March 2005.

 [RFC3971] Arkko, J., Kempf, J., Zill, B., and P. Nikander,
 "SEcure Neighbor Discovery (SEND)", RFC 3971, March 2005.

 [RFC2119] Bradner, S., "Key words for use in RFCs to
 Indicate Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2930] Eastlake 3rd, D., "Secret Key Establishment for
 DNS (TKEY RR)", RFC 2930, September 2000.

 [RFC1035] Mockapetris, P., "Domain Names - Implementation
 And Specification", RFC 1035, November 1987.

 [RFC4941] Narten, T., Draves, R., Krishnan, S., "Privacy
 Extensions for Stateless Address Autoconfiguration in
 IPv6", RFC 4941, September 2007.

 [RFC2136] Vixie, P. (Editor), Thomson, S., Rekhter, Y.,
 Bound, J., "Dynamic Updates in the Domain Name System (DNS
 UPDATE)", RFC 2136, April 1997.

 [RFC2845] Vixie, P., Gudmundsson, O. , Eastlake 3rd, D.,
 Wellington, B., " Secret Key Transaction Authentication for
 DNS (TSIG)", RFC 2845, May 2000.

 [RFC6106] Jeong, J., Park, S., Beloeil, L., Madanapalli,
 S.,"IPv6 Router Advertisement Options for DNS

Rafiee, et al. Expires August 15, 2014 [Page 24]

INTERNET DRAFT TSIG using CGA in IPv6 February 15, 2014

 Configuration",RFC 6106, November 2010.

17.2. Informative References

 [1] Aura, T., "Cryptographically Generated Addresses (CGA)",
 Lecture Notes in Computer Science, Springer, vol. 2851/2003, pp.
 29-43, 2003.

 [2] Montenegro, G. and Castelluccia, C., "Statistically Unique
 and Cryptographically Verifiable (SUCV) Identifiers and
 Addresses," ISOC Symposium on Network and Distributed System
 Security (NDSS 2002), the Internet Society, 2002.

 [3] AlSa’deh, A., Rafiee, H., Meinel, C., "IPv6 Stateless Address
 Autoconfiguration: Balancing Between Security, Privacy and
 Usability". Lecture Notes in Computer Science, Springer(5th
 International Symposium on Foundations & Practice of Security
 (FPS). October 25 - 26, 2012 Montreal, QC, Canada), 2012.

 [4] Rafiee, H., Meinel, C., "A Simple Secure Addressing
 Generation Scheme for IPv6 AutoConfiguration (SSAS)". Work in
 progress, http://tools.ietf.org/html/draft-rafiee-6man-ssas,
 2013.

 [5] Rafiee, H., Meinel, C., "A Simple Secure Addressing Scheme
 for IPv6 AutoConfiguration (SSAS)", 11th International conference
 on Privacy, Security and Trust (IEEE PST), 2013.

 [6] AlSa’deh, A., Rafiee, H., Meinel, C., "Cryptographically
 Generated Addresses (CGAs): Possible Attacks and Proposed
 Mitigation Approaches," in proceedings of 12th IEEE International
 Conference on Computer and Information Technology (IEEE CIT’12),
 pp.332-339, 2012.

 [7] Rafiee, H., Meinel, C., "A Secure, Flexible Framework for DNS
 Authentication in IPv6 Autoconfiguration" in proceedings of The
 12th IEEE International Symposium on Network Computing and
 Applications (IEEE NCA13), 2013.

Rafiee, et al. Expires August 15, 2014 [Page 25]

INTERNET DRAFT TSIG using CGA in IPv6 February 15, 2014

Authors’ Addresses

 Hosnieh Rafiee
 Ciber AG
 KoelnTurm
 Im Mediapark 8
 50670, Cologne
 http://www.ciber.com
 Phone: +49 (0221) 272 67- 122
 Email: ietf@rozanak.com

 Christoph Meinel
 Hasso-Plattner-Institute
 Prof.-Dr.-Helmert-Str. 2-3
 Potsdam, Germany
 Email: meinel@hpi.uni-potsdam.de

 Martin von Loewis
 Hasso-Plattner-Institute
 Prof.-Dr.-Helmert-Str. 2-3
 Potsdam, Germany

Rafiee, et al. Expires August 15, 2014 [Page 26]

	draft-bonica-intarea-gre-mtu-06
	draft-cao-dataplane-acceleration-framework-00
	draft-rafiee-intarea-cga-tsig-07

