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Abstract

   This memo describes how many vendors have solved the Generic Routing
   Encapsulation (GRE) fragmentation problem.  The solution described
   herein is configurable.  It is widely deployed on the Internet in its
   default configuration.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on February 13, 2015.

Copyright Notice

   Copyright (c) 2014 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust’s Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
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   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.
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1.  Introduction

   Generic Routing Encapsulation (GRE) [RFC2784] [RFC2890] can be used
   to carry any network layer protocol over any network layer protocol.
   GRE has been implemented by many vendors and is widely deployed in
   the Internet.

   The GRE specification does not describe fragmentation procedures.
   Lacking guidance from the specification, vendors have developed
   implementation-specific fragmentation solutions.  A GRE tunnel will
   operate correctly only if its ingress and egress nodes support
   compatible fragmentation solutions.  [RFC4459] describes several
   fragmentation solutions and evaluates their relative merits.

   This memo reviews the fragmentation solutions presented in [RFC4459].
   It also describes how many vendors have solved the GRE fragmentation
   problem.  The solution described herein is configurable, and has been
   widely deployed in its default configuration.

   This memo addresses point-to-point unicast GRE tunnels that carry
   IPv4, IPv6 or MPLS payloads.  All other tunnel types are beyond the
   scope of this document.
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1.1.  Terminology

   The following terms are specific to GRE and are taken from [RFC2784]:

   o  GRE delivery header - an IPv4 or IPv6 header whose source address
      represents the GRE ingress node and whose destination address
      represents the GRE egress node.  The GRE delivery header
      encapsulates a GRE header.

   o  GRE header - the GRE protocol header.  The GRE header is
      encapsulated in the GRE delivery header and encapsulates GRE
      payload.

   o  GRE payload - a network layer packet that is encapsulated by the
      GRE header.  The GRE payload can be IPv4, IPv6 or MPLS.
      Procedures for encapsulating IPv4 and IPv6 in GRE are described in
      [RFC2784] and [RFC2890].  Procedures for encapsulating MPLS in GRE
      are described in [RFC4023].  While other protocols may be
      delivered over GRE, they are beyond the scope of this document.

   o  GRE delivery packet - A packet containing a GRE delivery header, a
      GRE header, and GRE payload.

   o  GRE payload header - the IPv4, IPv6 or MPLS header of the GRE
      payload

   o  GRE overhead - the combined size of the GRE delivery header and
      the GRE header, measured in octets

   The following terms are specific MTU discovery:

   o  link MTU (LMTU) - the maximum transmission unit, i.e., maximum
      packet size in octets, that can be conveyed over a link.  LMTU is
      a unidirectional metric.  A bidirectional link may be
      characterized by one LMTU in the forward direction and another MTU
      in the reverse direction.

   o  path MTU (PMTU) - the minimum LMTU of all the links in a path
      between a source node and a destination node.  If the source and
      destination node are connected through an equal cost multipath
      (ECMP), the PMTU is equal to the minimum LMTU of all links
      contributing to the multipath.

   o  GRE MTU (GMTU) - the maximum transmission unit, i.e., maximum
      packet size in octets, that can be conveyed over a GRE tunnel
      without fragmentation of any kind.  The GMTU is equal to the PMTU
      associated with the path between the GRE ingress and the GRE
      egress, minus the GRE overhead
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   o  Path MTU Discovery (PMTUD) - A procedure for dynamically
      discovering the PMTU between two nodes on the Internet.  PMTUD
      procedures for IPv4 are defined in [RFC1191].  PMTUD procedures
      for IPv6 are defined in [RFC1981].

   The following terms are introduced by this memo:

   o  fragmentable packet - An IPv4 packet with DF-bit equal to 0 and
      whose payload is larger than 64 bytes

   o  ICMP Packet Too Big (PTB) message - an ICMPv4 [RFC0792]
      Destination Unreachable message with code equal to 4
      (fragmentation needed and DF set) or an ICMPv6 [RFC4443] Packet
      Too Big message

2.  Solutions

2.1.  RFC 4459 Solutions

   Section 3 of [RFC4459] identifies several tunnel fragmentation
   solutions.  These solutions define procedures to be invoked when the
   tunnel ingress router receives a packet so large that it cannot be
   forwarded though the tunnel without fragmentation of any kind.  When
   applied to GRE, these procedures are:

   1.  Discard the incoming packet and send an ICMP PTB message to the
       incoming packet’s source.

   2.  Fragment the incoming packet and encapsulate each fragment within
       a complete GRE header and GRE delivery header.

   3.  Encapsulate the incoming packet in a single GRE header and GRE
       delivery header.  Perform source fragmentation on the resulting
       GRE delivery packet.

   As per RFC 4459, Strategy 2) is applicable only when the incoming
   packet is fragmentable.  Also as per RFC 4459, each strategy has its
   relative merits and costs.

2.2.  A Widely-Deployed Solution

   Many vendors have implemented a configurable GRE fragmentation
   solution.  In its default configuration, the solution behaves as
   follows:

   o  When the GRE ingress node receives a fragmentable packet with
      length greater than the GMTU, it fragments the incoming packet and
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      encapsulates each fragment within a complete GRE header and GRE
      delivery header.

   o  When the GRE ingress node receives a non-fragmentable packet with
      length greater than the GMTU, it discards the packet and send an
      ICMP PTB message to the packet’s source.

   o  When the GRE egress node receives a GRE delivery packet fragment,
      it silently discards the fragment, without attempting to
      reassemble the GRE delivery packet to which the fragment belongs.

   In non-default configurations, the GRE ingress node can execute any
   of the procedures defined in RFC 4459.

   The solution described above is widely-deployed on the Internet in
   its default configuration.

3.  Implementation Details

   This section describes how many vendors have implemented the solution
   described in Section 2.2.

3.1.  General

   The GRE ingress nodes satisfy all of the requirements stated in
   [RFC2784].

3.2.  GRE MTU (GMTU) Estimation and Discovery

   GRE ingress nodes support a configuration option that associates a
   GMTU with a GRE tunnel.  By default, GMTU is equal to the MTU
   associated with next-hop toward the GRE egress node minus the GRE
   overhead.

   Typically, GRE ingress nodes further refine their GMTU estimate by
   executing PMTUD procedures.  However, if an implementation supports
   PMTUD for GRE tunnels, it also includes a configuration option that
   disables PMTUD.  This configuration option is required to mitigate
   certain denial of service attacks (see Section 5).

   The ingress node’s GMTU estimate will not always reflect the actual
   GMTU.  It is only an estimate.  When a tunnel’s GMTU changes, the
   tunnel ingress node will not discover that change immediately.
   Likewise, if the ingress node performs PMTUD procedures and tunnel
   interior nodes cannot deliver ICMP feedback to the tunnel ingress,
   GMTU estimates may be inaccurate.
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3.3.  GRE Ingress Node Procedures

   This section defines procedures that GRE ingress nodes execute when
   they receive a packet whose size is greater than the relevant GMTU.

3.3.1.  Procedures Affecting the GRE Payload

3.3.1.1.  IPv4 Payloads

   By default, if the payload is fragmentable, the GRE ingress node
   fragments the incoming packet and encapsulates each fragment within a
   complete GRE header and GRE delivery header.  Therefore, the GRE
   egress node receives several complete, non-fragmented delivery
   packets.  Each delivery packet contains a fragment of the GRE
   payload.  The GRE egress node forwards the payload fragments to their
   ultimate destination where they are reassembled.

   Also by default, if the payload is not fragmentable, the GRE ingress
   node discards the packet and sends an ICMPv4 Destination Unreachable
   message to the packet’s source.  The ICMPv4 Destination Unreachable
   message code equals 4 (fragmentation needed and DF set).  The ICMPv4
   Destination Unreachable message also contains an Next-hop MTU (as
   specified by [RFC1191]) and the next-hop MTU is equal to the GMTU
   associated with the tunnel.

   The GRE ingress node supports a non-default configuration option that
   invokes an alternative behavior.  If that option is configured, the
   GRE ingress node fragments the delivery header.  See Section 3.3.2
   for details.

3.3.1.2.  IPv6 Payloads

   By default, the GRE ingress node discards the packet and send an
   ICMPv6 [RFC4443] Packet Too Big message to the payload source.  The
   MTU specified in the Packet Too Big message is equal to the GMTU
   associated with the tunnel.

   The GRE ingress node supports a non-default configuration option that
   invokes an alternative behavior.  If that option is configured, the
   GRE ingress node fragments the delivery header.See Section 3.3.2 for
   details.

3.3.1.3.  MPLS Payloads

   By default, the GRE ingress node discards the packet.  As it is
   impossible to reliably identify the payload source, the GRE ingress
   node does not attempt to send an ICMP PTB message to the payload
   source.
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   The GRE ingress node supports a non-default configuration option that
   invokes an alternative behavior.  If that option is configured, the
   GRE ingress node fragments the delivery header.  See Section 3.3.2.

3.3.2.  Procedures Affecting The GRE Deliver Header

3.3.2.1.  Tunneling GRE Over IPv4

   By default, the GRE ingress node does not fragment delivery packets.
   However, the GRE ingress node includes a configuration option that
   allows delivery packet fragmentation.

   By default, the GRE ingress node sets the DF-bit in the delivery
   header to 1 (Don’t Fragment).  However, the GRE ingress node also
   supports a configuration option that invokes the following behavior:

   o  when the GRE payload is IPv6, the DF-bit on the delivery header is
      set to 0 (Fragments Allowed)

   o  when the GRE payload is IPv4, the DF-bit is copied from the
      payload header to the delivery header

   When the DF-bit on an IPv4 delivery header is set to 0, the GRE
   delivery packet can be fragmented by any node between the GRE ingress
   and the GRE egress.

   If the delivery packet is fragmented, it is reassembled by the GRE
   egress.

3.3.2.2.  Tunneling GRE Over IPv6

   By default, the GRE ingress node does not fragment delivery packets.
   However, the GRE ingress node includes a configuration option that
   allows this.

   If the delivery packet is fragmented, it is reassembled by the GRE
   egress.

3.4.  GRE Egress Node Procedures

   By default, the GRE egress node silently discards GRE delivery packet
   fragments, without attempting to reassemble the GRE delivery packets
   to which the fragments belongs.

   However, the GRE egress node supports a configuration option that
   allows it to reassemble GRE delivery packets.
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4.  IANA Considerations

   This document makes no request of IANA.

5.  Security Considerations

   In the GRE fragmentation solution described above, either the GRE
   payload or the GRE delivery packet can be fragmented.  If the GRE
   payload is fragmented, it is typically reassembled at its ultimate
   destination.  If the GRE delivery packet is fragmented, it is
   typically reassembled at the GRE egress node.

   The packet reassembly process is resource intensive and vulnerable to
   several denial of service attacks.  In the simplest attack, the
   attacker sends fragmented packets more quickly than the victim can
   reassemble them.  In a variation on that attack, the first fragment
   of each packet is missing, so that no packet can ever be reassembled.

   Given that the packet reassembly process is resource intensive and
   vulnerable to denial of service attacks, operators should decide
   where reassembly process is best performed.  Having made that
   decision, they should decide whether to fragment the GRE payload or
   GRE delivery packet, accordingly.

   PMTU Discovery is vulnerable to two denial of service attacks (see
   Section 8 of [RFC1191] for details).  Both attacks are based upon on
   a malicious party sending forged ICMPv4 Destination Unreachable or
   ICMPv6 Packet Too Big messages to a host.  In the first attack, the
   forged message indicates an inordinately small PMTU.  In the second
   attack, the forged message indicates an inordinately large MTU.  In
   both cases, throughput is adversely affected.  On order to mitigate
   such attacks, GRE implementations includes a configuration option to
   disable PMTU discovery on GRE tunnels.  Also, they can include a
   configuration option that conditions the behavior of PMTUD to
   establish a minimum PMTU.
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Abstract

   It is getting popular to running data applications over general
   purpose hardware/chipsets, instead of customized and dedicated
   hardware/chipset.  This way further decouples the software functions
   from the hardware.  But moving data processing intensive applications
   to general purpose hardware is still challenging, although the
   industry has supplied some proprietary solutions.  This document
   discusses the problems of data plane acceleration and proposes its
   framework.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on August 17, 2014.

Copyright Notice

   Copyright (c) 2014 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust’s Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
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   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.
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1.  Introduction

   The need of running network data processing functions over general
   purpose hardware/chipset (e.g., X86, PPC, etc) is multi-folded.

   1.  Decoupling software functions from hardware.  Traditional network
       devices are built upon dedicated or deep customized hardware and
       chipsets.  This way restricts the flexibility of both service
       providers and network operators.

   2.  Network Function Virtualization (NFV).  NFV is an initiative of
       ETSI to virtualize the network functions to the overlay on top of
       the virtualization layer.  It provides network elasticity in that
       the network functions can be scaled up/down according to the
       traffic load.  NFV solutions often bundle with the virtual
       switches to provide VM-VM communications.  Theses virtual
       switches are running on top of the servers that bear the network
       functions.  Therefore, the need to accelerate the data processing
       efficiency is indispensable.

   3.  Service Time-to-Market . Via the software and hardware
       decoupling, the speed to provide new services (TTM) is greatly
       enhanced.  Since more and more services would like to have the
       most convenient time to market, they would also like to move data
       processing functions on top of general purpose hardware/chipsets.
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   4.  Capex and Opex pressure.  Having the network functions running
       over general purpose device will help operators to cut down their
       Capex and Opex.

   5.  Cost-performance targets: software development, debug and
       integration is simplified; processor resource utilization is
       improved because the control plane and data plane can be
       distributed among cores with greater flexibility; development
       schedule risk is minimized and software maintenance is much
       easier with a common code base and a single development
       environment.

2.  Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119 [RFC2119].

3.  DPA Framework

   NF (Network Function): A functional building block within an
   operator’s network infrastructure, which has well-defined external
   interfaces and a well-defined functional behaviour.  Note that the
   totality of all network functions constitutes the entire network and
   services infrastructure of an operator/service provider.  In
   practical terms, a Network Function is today often a network node or
   physical appliance.  [Quoted from ETSI NFV]

3.1.  Framework

   The framework is depicted in Figure 1.  Framework.
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     +--------------------+  +-+
     |Buffer Management   |  | |
     |Queue Management    |  |A|===== App
     |Memory Management   |==|P|===== App
     |Flow Classification |  |I|===== App
     |Other techniques    |  | |
     +--------------------+  +-+
          ||   ||   ||
     +----------------------------------------------+
     |         Hardware Abstraction Layer           |
     +----------------------------------------------+
                                                  User Space
   ---------------------------------------------------------
          ||   ||   ||                          Kernel Space
   +--------------------------------------------------+
   | +--------------------------+                     |
   | |Hardware Abstraction Layer|         OS Kernel   |
   | +--------------------------+                     |
   +--------------------------------------------------+
          ||   ||   ||
     +----------------------------------------------+
     |            Platform Hardware                 |
     +----------------------------------------------+

                                 Figure 1

3.2.  Components

   The DPA may include the following components.

   Memory/Buffer Manager.  The Memory/Buffer Manager is responsible for
   allocating NUMA-aware pools of objects in memory and balancing memory
   bandwidth utilization across the channels.  Such management can
   significantly reduces the amount of time the operating system must
   spend allocating and de-allocating buffers.

   Queue Manager.  The Queue Manager is responsible for queue
   scheduling.  The ultimate goal of the Queue Manager is to allow
   different software components to process packets, while avoiding
   unnecessary wait times.

   Flow Classification.  The Flow Classification component is an
   efficient mechanism for generating a hash used to quickly combine
   packets into flows, which enables faster processing and greater
   throughput.

   Poll Mode Drivers.  The Poll Mode Drivers is capable of speeding up
   the packet pipeline for 1 GbE and 10 GbE ethernet controllers by
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   receiving and transmitting packets without the use of asynchronous,
   interrupt- based signaling mechanisms, which have a lot of overhead.

   Environment Abstraction Layer.  The Environment Abstraction Layer
   provides an abstraction to platform-specific initialization code,
   which eases application porting effort.  The EAL provides access to
   low-level resources (hardware, memory space, logical cores, etc.)
   through a generic interface that hides the environment specifics from
   the applications and libraries.

3.3.  Protocol Portfolio

   On one hand, for the data plane, DPA should provide an efficient
   stack for common protocols utilized by various internet applications,
   including but not limited to:

   1.  Link layer: Layer 2 switch, VLAN.

   2.  Network layer: IPv4 and IPv6 for packet routing; MPLS and GRE/GTP
   for tunneled routing; IPsec, TLS/DTLS, NAT and QoS support for
   security and management features.

   3.  Transport layer: SCTP/MPTCP as well as TCP and UDP, for multi-
   homing/stream traffic.

   4.  Application layer: SSL termination for remote administration of
   virtualized device.

   On the other hand, for the control plane, DPA should provide an
   efficient stack for common protocols utilized by various network
   devices/ISPs for improved operation and Management, including:
   NetFlow, sFlow, IPFIX, SPAN, RSPAN for VM traffic monitory, LACP, STP
   and openflow for L2/L3 management.

4.  Existing Work - Intel DPDK

   This section introduces DPDK [DPDK].

   Intel Data Plane Development Kit (DPDK) is a set of libraries and
   drivers for fast packet processing on x86 platforms.  It runs mostly
   in Linux userland.The idea of DPDK has significantly advanced the
   concept of consolidation of data and control planes on a general
   purpose processor.  Such idea greatly boosts packet processing
   performance and throughput by providing Intel architecture-optimized
   libraries to accelerate L3 forwarding, yielding performance that
   scales linearly with the number of cores, in contrast to native
   Linux.
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   The Intel DPDK contains a growing number of libraries, whose source
   code is available for developers to use and/or modify in a production
   network element.  Likewise, there are various usecase examples, such
   as L3 forwarding, load balancing, and timers, that help reduce
   development time.  The libraries can be used to build applications
   based on "run-to completion" or "pipeline" models, enabling the
   equipment provider’s application to maintain complete control.

   the Intel DPDK software is also available to aid in the development
   of I/O intensive applications running in a virtualized environment.
   This combination allows application developers to achieve near-native
   performance.

   The Intel DPDK provides a simple framework for fast packet processing
   in data plane application.  Developers may use the code to understand
   some of the techniques employed, to build upon for prototyping, or to
   add their own protocol stacks.  SR-IOV features are also used for
   hadware-based I/O sharing in I/O virtualization (IOV) mode.
   Therefore, it is possible to partition intel 82599 10 Gb Ethernet
   controller NIC resources logically and expose them to a VM as a
   virtual function

   Furthermore, 6WIND has developed a number of value-added enhancements
   to the Intel DPDK library that provide increased system functionality
   and performance compared to the baseline software.  These value-added
   enhancements include the following aspects.

   Hige-performance software crypto support, implemented via the Intel
   Advanced Encryption Standard New Instructions (Intel AES-NI) in the
   Intel Xeon processor E5600 series and E5-2600 v2 series.

   Device monitoring and statistics functions,such as Linux Ethtool MTU
   support, full RX/TX queue statistics and CRC error statistics, which
   enable improved system-level profiling, analysis and debug.

   Support for additional Network Interface Cards(NICs), such as the
   Intel 82571EB Gibabit Ethernet controller, beyond those supported in
   the baseline Intel DPDK library.

   6WIND also provides a range of optional add-on extensions to the
   Intel DPDK designed to improve the cost/performance of both physical
   and virtual networking appliances while enabling the use of the intel
   DPDK in software-defined networks.  These optional add-ons include:

   IPsec acceleration, achieved through integration of the Intel Multi-
   buffer Crypto for IPSec library;
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   Crypto acceleration via support of an external accelerator, the Intel
   Communications Chipset 89xx series, which is part of Intel’s next-
   generation communications platform,codenamed "Crystal Forest"

   Virtualization-related enhancements that maximize system performance
   by removing key I/O and communication bottlenecks include:

   1.  I/O Virtualization(IOV), an industry-standard approach for
       increasing the performance of virtual network appliances by
       bypassing the virtual switch within the hypervisor, thus removing
       the I/O performance constraints imposed by the virtual switch.

   2.  A virtual NIC(vNIC) driver that leverages communication between
       virtual machines via the virtual switch, enabling the efficient
       development and provisioning of systems with multiple VMs and
       significant East-West network traffic.

   3.  For system that require the ultimate level of performance for
       East- West traffic between VMs, a VM-to-VM driver enables direct
       VM-to-VM communication, bypassing the virtual switch while
       remaining fully compatible with industry-standard hypervisors.

   These Intel DPDK enhancements and optional add-ons are maintained by
   6WIND as private branch, regularly synchronized with Intel’s on-going
   releases of the baseline library.  They are delivered to customers
   either as a stand alone library or, for applications that also
   require high- performance packet processing software, and integrated
   within the 6WINDGate software solution.

   The 6WINDGate packet processing software is designed to solve the
   problem of exploiting the potential packet processing performance of
   multicore processor through a fast pth-based architecture, while
   incorporating a comprehensive set of high performance networking
   protocols fully optimized for intel Xeon processor-based platforms.

5.  Open Questions to IETF

   IETF has been design Layer 2&3 protocols, and most of them are
   dedicated to data plane processing.  The efficient implementation of
   protocol and tailoring them for specific hardware/chipsets have not
   been considered as main-stream IETF work (there are indeed some
   thread anyway, e.g. tailor for M2M).  But to make IETF protocols as
   efficient as possible is definitely within the scope of IETF.  Below
   are some discussion of open questions to IETF w.r.t. the data plane
   process acceleration topic.

   1.  Importance.  The game changing initiatives already started.  NFV
       and further virtualization and decoupling practices are
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       happening.  Before the questions have been ported to specialized
       hardware, but now the industry is changing the game.  Do it need
       the standardization collaboration?

   2.  Relevance.  As we authors believe it, to make IETF protocols as
       efficient as possible is definitely within the scope of IETF.
       Although implementation techniques are mostly software
       engineering practice and have no business with any SDOs, the
       abstract API design and exposure of lower layer capability will
       definitely benefit the data plane processing efficiency.

   3.  Necessity.  Now that DPDK is already open source.  But the
       experience in DPDK can feedback to IETF on how to improve the
       protocol design in promoting data plane acceleration
       effectiveness.
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Abstract

   This document describes a new mechanism that can be used to reduce
   the need for human intervention during DNS authentication and secure
   DNS authentication in various scenarios such as the DNS
   authentication of resolvers to stub resolvers, authentication during
   zone transfers, authentication of root DNS servers to recursive DNS
   servers, and authentication during the FQDN (RFC 4703) update.

   Especially in the last scenario, i.e., FQDN, if the node uses the
   Neighbor Discovery Protocol (NDP) (RFC 4861, RFC 4862), unlike the
   Dynamic Host Configuration Protocol (DHCP) (RFC 3315), the node has
   no way of updating his FQDN records on the DNS and has no means for a
   secure authentication with the DNS server. While this is a major
   problem in NDP-enabled networks, this is a minor problem in DHCPv6.
   This is because the DHCP server updates the FQDN records on behalf of
   the nodes on the network. This document also introduces a possible
   algorithm for DNS data confidentiality.

Status of this Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF). Note that other groups may also distribute working
   documents as Internet-Drafts. The list of current Internet-Drafts is
   at http://datatracker.ietf.org/drafts/current.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time. It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on August 15, 2014.
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1.  Introduction

   Transaction SIGnature (TSIG) [RFC2845] is a protocol that provides
   endpoint authentication and data integrity through the use of one-way
   hashing and shared secret keys in order to establish a trust
   relationship between two/group of hosts, which can be either a client
   and a server, or two servers. The TSIG keys, which are manually
   exchanged between a group of hosts, need to be maintained in a secure
   manner. This protocol is today mostly used to secure a Dynamic
   Update, or to give assurance to the slave name server that the zone
   transfer is from the original master name server and that it has not
   been spoofed by hackers. It does this by verifying the signature
   using a cryptographic key that is shared with the receiver.

   But, handling this shared secret in a secure manner and exchanging
   it, does not seem to be easy. This is especially true if the IP
   addresses are dynamic due to privacy reasons or the shared secret is
   exposed to attacker. To address the existing problems with TSIG, this
   document proposes the use of Cryptographically Generated Addresses
   (CGA) [RFC3972] or Secure Simple Addressing Scheme for IPv6
   Authoconfiguration (SSAS) as a new algorithm in the TSIG Resource
   Record (RR). CGA is an important option available in Secure Neighbor
   Discovery (SeND) [RFC3971], which provides nodes with the necessary
   proof of IP address ownership by providing a cryptographic binding
   between a host?s public key and its IP address without the need for
   the introduction of a new infrastructure.

   This document also addresses the DNS data confidentiality by using
   both asymmetric and symmetric cryptography as well as data integrity.
   This document updates the following sections in TSIG document

   - section 4.2: The server MUST not generate a signed response to an
   unsigned request => The server MUST not generate a signed response to
   an unsigned request, unless the Algorithm Name filed contains
   CGA-TSIG.

   - Section 4.5.2: It MUST include the client’s current time in the
   time signed field, the server’s current time (a u_int48_t) in the
   other data field, and 6 in the other data length field => It MUST
   include the client’s current time in the time signed field, the
   server’s current time (a u_int48_t) in the other data field, and if
   the Algorithm Name is CGA-TSIG, then add the length of this client?s
   current time to the total length of Other DATA field. The client?s
   current time in this case will be placed after the CGA-TSIG Data.

1.1.  Problem Statement

   The authentication during any DNS query process is solely based on
   the source IP address when no secure mechanism is in use either
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   during the DNS update (zone transfer, FQDN update) or during the DNS
   query resolving process. This makes the DNS query process vulnerable
   to several types of spoofing attacks -- man in the middle, source IP
   spoofing, etc. One example is the problem that exists between a
   client and a DNS resolver. When a client sends a DNS query to a
   resolver, an attacker can send a response to this client containing
   the spoofed source IP address for this resolver. The client checks
   the resolver’s source IP address for authentication. If the attacker
   spoofed the resolver’s IP address, and if the attacker responds
   faster than the legitimate resolver, then the client’s cache will be
   updated with the attacker’s response. The client does not have any
   way to authenticate the resolver.

   If DNSSEC (RFC 6840) or TSIG, as a security mechanism is in use, then
   the problem would be the manual step required for the configuration.
   For instance, when a DNSSEC needs to sign the zone offline. The
   public key verification in DNSSEC creates chicken and eggs situation.
   In other words, the key for verifying messages should be obtained
   from DNSSEC server itself. This is why the query requestor needed to
   ask other DNS servers up to top level in root to be able to verify
   the key. If this does not happen, DNSSEC is vulnerable to IP spoofing
   attack. This problem could easily be handled by the use of CGA-TSIG
   as a means of providing the proof of IP address ownership.

   If TSIG is in use, the shared secret exchange is done offline.
   Currently there is little deployment of TSIG for resolver
   authentication with clients. One reason is that resolvers respond to
   anonymous queries and can be located in any part of the network. A
   second reason is that the manual TSIG process makes it difficult to
   configure each new client with the shared secret of the resolver.
   Another catastrophic problem with TSIG would be when this shared
   secret, that is shared between a group of hosts, leaks and makes it
   necessary to repeat this manual step. The reason is, that for each
   group of hosts there needs to be one shared secret and the
   administrator will need to manually add it to the DNS configuration
   file for each of these hosts. This manual process will need to be
   invoked in the case where one of these hosts is compromised and the
   shared secret is well known to the attacker. It will also have to be
   invoked in the case where any of these hosts needs to change their IP
   addresses, because of different reasons such as privacy issues, as
   explained in RFC 4941 [RFC4941], or when moving to another subnet
   within the same network, etc. Therefore, the problem that exists
   today with the authentication processes used in different scenarios
   is what this document addresses. The various scenarios include
   authentication during zone transfer, authentication of the nodes
   during DNS query resolving and authentication during updating PTR and
   FQDN (RFC 4703).

2.  Conventions used in this document

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

Rafiee, et al.      Expires August 15, 2014                     [Page 5]



INTERNET DRAFT             TSIG using CGA in IPv6      February 15, 2014

   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119 [RFC2119].

   In this document, these words will appear with that interpretation
   only when in ALL CAPS. Lower case uses of these words are not to be
   interpreted as carrying RFC 2119 significance.

   => This sign in the document should be interpreted as "change to".

3.  Terminology

   The terms used in this document have the following standard meaning:

   - Name server: A server that supports DNS service.

   - Resolver/recursive DNS server: A resolver/recursive name server
   responds to queries where the query does not contain an entry for the
   node in its database. It first checks its own records and cache for
   the answer to the query and then, if it cannot find an answer there,
   it may recursively query name servers higher up in the hierarchy and
   then pass the response back to the originator of the query. This is
   known as a recursive query or recursive lookup.

   - Stub resolver: A specific kind of DNS resolver that is unable to
   resolve the queries recursively. So, it relies on a recursive DNS
   resolver to resolve the queries.

   - Authoritative: An authoritative name server provides the answers to
   DNS queries. For example, it would respond to a query about a mail
   server IP address or website IP address. It provides original,
   first-hand, definitive answers (authoritative answers) to DNS
   queries. It does not provide ’just cached’ answers that were obtained
   from another name server. Therefore it only returns answers to
   queries about domain names that are installed in its system
   configuration.

   There are two types of Authoritative Name Servers:

   1.   Master server (primary name server): A master server stores the
   original master copies of all zone records. A host master is only
   allowed to change the master server?s zone records. Each slave server
   gets updated via a special automatic updating mechanism within the
   DNS protocol. All slave servers maintain identical copies of the
   master records.

   2.   Slave server (secondary name server): A slave server is an exact
   replica of the master server. It is used to share the DNS server’s
   load and to improve DNS zone availability in cases where the master
   server fails. It is recommended that there be at least 2 slave
   servers and one master server for each domain name.
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   - Root DNS server: An authoritative DNS server for a specific root
   domain. For example, .com

   - Client: a client can be any computer (server, laptop, etc) that
   only supports stub DNS servers and not other DNS services. It can be
   a mail server, web server or a laptop computer.

   - Node: a node can be anything such as a client, a DNS server
   (resolver, authoritative) or a router.

   - Host: all nodes except routers

4.  Algorithm overview

   The following sections explain the use of CGA or any other future
   algorithm in place of CGA for securing the DNS process by adding a
   CGA-TSIG data structure as an option to the TSIG Resource Record
   (RR).

4.1.  The CGA-TSIG DATA structure

   The CGA-TSIG data structure SHOULD be added to the Other DATA section
   of the RDATA field in the TSIG Resource Record (RR) (see figures 1
   and 2). The DNS RRTYPE MUST be set to TSIG [RFC2845]. The RDATA
   Algorithm Name MUST be set to CGA-TSIG. The Name MUST be set to root
   (.).This is the smallest possible value that can be used. The MAC
   Size MUST be set to 0. A detailed explanation of the standard RDATA
   fields can be found in section 2.3 RFC 2845. This document focuses
   only on the new structure added to the Other DATA section. These new
   fields are CGA-TSIG Len and CGA-TSIG DATA. The TSIG RR is added to an
   additional section of the DNS message. If another algorithm is used
   in place of CGA for SeND, such as SSAS [4 , 5], then the CGA-TSIG Len
   will be the length for the parameters of this algorithm and CGA-TSIG
   DATA will consist of the parameters required for verification of that
   algorithm, like signature, public key, etc.

   +---------------------------------------+
   |              Algorithm Name           |
   |               (CGA-TSIG)              |
   +---------------------------------------+
   |              Time Signed              |
   |                                       |
   +---------------------------------------+
   |                  Fudge                |
   |                                       |
   +---------------------------------------+
   |                 MAC Size              |
   |                                       |
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   +---------------------------------------+
   |                   Mac                 |
   |                                       |
   +---------------------------------------+
   |               Original ID             |
   |                                       |
   +---------------------------------------+
   |                   Error               |
   |                                       |
   +---------------------------------------+
   |                OTHER LEN              |
   |                                       |
   +---------------------------------------+
   |               OTHER DATA              |
   |                                       |
   +---------------------------------------+
   Figure 1   Modified TSIG RDATA

   The CGA-TSIG DATA Field and the CGA-TSIG Len will occupy the first
   two slots of Other DATA. Figure 2 shows the layout. Any extra
   options/data should be placed after CGA-TSIG field. CGA-TSIG Len is
   the length of CGA-TSIG DATA in byte. This value is multiple of 8.

   +---------------------------------------+
   |             CGA-TSIG Len              |
   |              (1 byte)                 |
   +---------------------------------------+
   |             CGA-TSIG DATA             |
   |                                       |
   +---------------------------------------+
   |             Other Options             |
   |                                       |
   +---------------------------------------+
   Figure 2     Other DATA section of RDATA field

   CGA-TSIG DATA Field Name   Data Type     Notes
   --------------------------------------------------------------
   Algorithm type        u_int16_t   IANA numeric value of
                                     the algorithm
                                     for RSA 1.2.840.113549.1.1.1
   type                  u_int16_t   Name of the algorithm used in
                                     SEND
   IP tag                16 octet    the tag used to identify the IP
                                     address
   Parameters Len        Octet       the length of CGA parameters
   Parameters            variable    CGA parameters Section 3 RFC 3972
   Signature Len         Octet       the length of CGA signature
   Signature             variable    Section 3.2.1 This document
   old pubkey Len        variable    the length of old public key
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                                     field
   old pubkey            variable    Old public key in ASN.1 DER
                                        format (the same format as public key)
   old Signature Len     variable    the length of old signature field
   old Signature         variable    Old signature generated by old
                                     public key.

   Type indicates the Interface ID generation algorithm that was used in
   SeND (An Interface ID is the 64 leftmost bits of an IPv6 address.).
   This field allows for the use of future, optional algorithms in SeND.
   The default value for CGA is 1. The IP tag is a node’s old IP
   address. A client’s public key can be associated with several IP
   addresses on a server. The DNS server, or the DNS message verifier
   node, SHOULD store the IP addresses and the public keys so as to
   indicate their association to each other. If a client wants to add
   RRs to the server by using a new IP address, then the IP tag field
   will be set to binary zeroes. The server will then store the new IP
   address that was passed to it in storage. If the client wants to
   replace an existing IP address in a DNS server with a new one, then
   the IP tag field will be populated with the IP address which is to be
   replaced. The DNS server will then look for the IP address referenced
   by the IP tag stored in its storage and replace that IP address with
   the new one. This enables the client to update his own RRs using
   multiple IP addresses while, at the same time, giving him the ability
   to change IP addresses. If a node changes its public key in order to
   maintain privacy, then it MUST add the old public key to the old
   pubkey field. It MUST also retrieve the current time from Time Signed
   field, sign it using the old private key, and then add the digest
   (signature) to the old signature field. This enables the verifier
   node to authenticate a host with a new public key. The detailed
   verification steps are explained in sections 5.1, 6.1 and 7.1.

4.2.  Generation of CGA-TSIG DATA

   In order to use CGA-TSIG as an authentication approach, some of the
   parameters need to be cached during IP address generation. If no
   parameters are available in cache, please see section 8. If the Type
   (section 4.1) is CGA, then the parameters that SHOULD be cached are
   the modifier, algorithm type, location of the public/private keys and
   the IP addresses of this host generated by the use of CGA.

   1. Obtain required parameters from cache.

   The CGA-TSIG algorithm obtains the old IP address, modifier, subnet
   prefix, collision count and public key from cache. It concatenates
   the old IP address with the CGA parameters, i.e., modifier, subnet
   prefix, collision count, public key (the order of CGA parameters are
   shown in section 3 RFC 3972). If the old IP address is not available,
   then CGA-TSIG must set the old IP address (IP tag) to zero.
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   Note: If the node is a DNS server (resolver or authoritative DNS
   server) which does not support SeND, but wants to use CGA-TSIG
   algorithm, then it is possible to use a script to generate the CGA
   parameters, which are needed to manually configure this server’s IP
   address. Then this server can make use these parameters for
   authentication purposes.

   +---------------------------------------+
   |           Algorithm Name              |
   |                                       |
   +---------------------------------------+
   |                Type                   |
   |                                       |
   +---------------------------------------+
   |               IP tag                  |
   |             (16 bytes)                |
   +---------------------------------------+
   |             Parameter Len             |
   |              (1 byte)                 |
   +---------------------------------------+
   |             Parameters                |
   |             (variable)                |
   +---------------------------------------+
   |            Signature Len              |
   |               (1 byte)                |
   +---------------------------------------+
   |              Signature                |
   |              (variable)               |
   +---------------------------------------+
   |            old pubkey Len             |
   |               (1 byte)                |
   +---------------------------------------+
   |              old pubkey               |
   |              (variable)               |
   +---------------------------------------+
   |           old Signature Len           |
   |               (1 byte)                |
   +---------------------------------------+
   |            old Signature              |
   |              (variable)               |
   +---------------------------------------+
 Figure 3 CGA-TSIG DATA Field

   2. Generate signature

   For signature generation, The 128-bit CGA Message Type tag value for
   SeND that is 0x086F CA5E 10B2 00C9 9C8C E001 6427 7C08, is
   concatenated with the whole DNS message from Type to additional data
   sections (Please refer to figure 4 and figure 5) excluding the
   signature fields itself in the CGA-TSIG DATA is signed by using a RSA
   algorithm, by default, or any future algorithm used in place of RSA,
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   and the private key which was obtained from cache in the first step.
   This signature must be added to the signature field of the CGA-TSIG
   DATA. Time Signed is the same timestamp as is used in RDATA. This
   value is the number of seconds since 1 January 1970 in UTC obtained
   from the signature generator. This approach will prevent replay
   attacks by changing the content of the signature each time a node
   wants to send a DNS message. The format of DNS messages is explained
   in section 4.1.3 RFC 1035 [RFC1035]. Figure 6 shows this signature.

  +-----+------+--------+
  |Type |Length|Reserved|
  |1byte|1 byte| 1 byte |
  +---------------------+
  |        Header       |
  |       12 bytes      |
  +---------------------+
  |     Zone section    |
  |   variable length   |
  +---------------------+
  |    prerequisite     |
  |   variable length   |
  +---------------------+
  |    Update section   |
  |   variable length   |
  +---------------------+
  |   Additional Data   |
  |   variable length   |
  +---------------------+
 Figure 4 DNS update message

  +-----+------+--------+
  |Type |Length|Reserved|
  |1byte|1 byte| 1 byte |
  +---------------------+
  |        Header       |
  |       12 bytes      |
  +---------------------+
  |       Question      |
  |   variable length   |
  +---------------------+
  |       Answer        |
  |   variable length   |
  +---------------------+
  |       Authority     |
  |   variable length   |
  +---------------------+
  |   Additional Data   |
  |   variable length   |
  +---------------------+
 Figure 5 DNS Query message (section 4.1 RFC 1035)
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   +------------------+
   |  CGA message tag |
   |     16 bytes     |
   +------------------+
   |   DNS message    |
   |   (excluding     |
   | signature fields |
   |in CGA-TSIG DATA) |
   +------------------+
Figure 6 CGA-TSIG Signature content

   3. Generate old signature

   If the nodes generated new key pairs, then they need to add the old
   public key and message, signed by the old private key, to CGA-TSIG
   DATA. A node will retrieve the timestamp from Time Signed, will use
   the old private key to sign it, and then will add the content of this
   signature to the old signature field of CGA-TSIG DATA. This step MUST
   be skipped when the node did not generate new key pairs.

5.  Authentication during Zone Transfer

   This section discusses the use of CGA-TSIG for the authentication of
   two DNS servers (a master and a slave). In the case of processing a
   DNS update for multiple DNS servers (authentication of two DNS
   servers), there are two possible scenarios with regard to the
   authentication process, which differs from that of the authentication
   of a node (client) with one DNS server. This is because of the need
   for human intervention.

   a. Add the DNS servers’ IP address to a slave configuration file

   A DNS server administrator should only manually add the IP address of
   the master DNS server to the configuration file of the slave DNS
   server. When the DNS update message is processed, the slave DNS
   server can authenticate the master DNS server based on the source IP
   address and then, prove the ownership of this address by use of the
   CGA-TSIG option from the TSIG RR. This scenario will be valid until
   the IP address in any of these DNS servers, changes.

   To automate this process, the sender’s public key of the DNS Update
   message must be saved on the other DNS server, after the source IP
   address has been successfully verified for the first time. In this
   case, when the sender generates a new IP address by executing the CGA
   algorithm using the same public key, the other DNS server can still
   verify it and add its new IP address to the DNS configuration file
   automatically.
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   b. Retrieve public/private keys from a third party Trusted Authority
   (TA)

   The message exchange option of SeND [RFC3971] may be used for the
   retrieval of the third party certificate. This may be done
   automatically from the TA by using the Certificate Path Solicitation
   and the Certificate Path Advertisement messages. Like in scenario b,
   the certificate should be saved on the DNS server for later use for
   the generation of its address or for the DNS update process. In this
   case, whenever any of these servers want to generate a new IP
   address, then the DNS update process can be accomplished
   automatically without the need for human intervention.

5.1.  Verification process

   Sender authentication is necessary in order to prevent attackers from
   making unauthorized modifications to DNS servers through the use of
   spoofed DNS messages. The verification process executes the following
   steps:

   1. Verify the signature

   The signature contained in CGA-TSIG DATA should be verified. This can
   be done by retrieving the public key and signature from CGA-TSIG DATA
   and using this public key to verify the signature. If the
   verification process is successful, then step 2 will be executed. If
   the verification fails, then the message should be discarded without
   further action.

   2. Check the Time Signed

   The Time Signed value is obtained from TSIG RDATA and is called t1.
   The current system time is then obtained and converted to UTC time
   and is called t2. Fudge time is obtained from TSIG RDATA. If t1 is in
   the range of t2 and t2 minus/plus fudge (see formula 1) then step 3
   will be executed. Otherwise, the message will be considered a spoofed
   message and the message should be discarded without further action.
   The range is used in consideration of the delays that can occur
   during its transmission over TCP or UDP. Both times must use UTC time
   in order to avoid differences in time based on different geographical
   locations.

   (t1 - fudge) <= t2 <=(t1 + fudge) (1)

   3. Execute the CGA verification

   These steps are found in section 5 RFC 3972. If the sender of the DNS
   message uses another algorithm, instead of CGA, then this step
   becomes the verification step for that algorithm. If the verification
   process is successful, then step 4 will be executed. Otherwise the
   message will be discarded without further action.
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   4. Verify the source IP address

   The source IP address of the Update requester MUST be checked against
   the one contained in the DNS configuration file. If it is the same,
   then the Update Message should be processed, otherwise, step 5 will
   be executed.

   5. Verify the public key

   The DNS server checks whether or not the public key retrieved from
   CGA-TSIG DATA is the same as what was available in the storage where
   the public keys and IP addresses were saved. If no entry is found in
   storage for this public key, then the update will be rejected without
   further action. Otherwise, when the old public key length is not zero
   go to step 6.

   6. Verify the old public key

   If the old public key length is zero, then skip this step and discard
   the DNS update message without further action. If the old public key
   length is not zero, then the DNS server will retrieve the old public
   key from CGA-TSIG DATA and will check to see whether or not it is the
   same as what was saved in the DNS server’s storage where the public
   keys and IP addresses are stored. If it is the same, then step 6 will
   be executed, otherwise the message should be discarded without
   further action.

   7. Verify the old signature

   The old signature contained in CGA-TSIG DATA should be verified. This
   can be done by retrieving the old public key and the old signature
   from CGA-TSIG DATA and then using this old public key to verify the
   old signature. If the verification is successful, then the Update
   Message should be processed and the new public key should be replaced
   with the old public key in the DNS server. If the verification
   process fails, then the message should be discarded without further
   action.

6.  Authentication during the FQDN or PTR Update

   Normally the DHCPv6 server will update the client’s RRs on their
   behalf in the scenario where SeND is used as a secure NDP, the nodes
   will need to do this process themselves unless there is stateless
   DHCPv6 server available. CGA-TSIG can be used to give nodes the
   ability of doing this process themselves. In this case the clients
   need to include the CGA-TSIG option in order to allow the DNS server
   to verify them. The verification process is the same as that
   explained in section except for step 4.
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6.1.  Verification Process

   The verification steps are the same as those is explained in section
   5.1, but removing step 4 and modifying step 5.

   1- Verify the signature

   2- Check the Time Signed

   3- Execute the CGA verification

   4. Verify the public key

   The DNS server checks whether or not the public key retrieved from
   CGA-TSIG DATA is the same as what was available in the storage where
   the public keys and IP addresses were saved. If no entry is found in
   storage for this public key, and the FQDN or PTR is also not
   available in the DNS server, then the DNS server will store the
   public key of this node in his database and add this node’s PTR and
   FQDN. Otherwise if any PTR is available, and the node IP tag is
   empty, or there is currently another public key associated with the
   node’s FQDN, then the update will be rejected without further action.
   Otherwise go to step 5 when the old public key length is not zero.

   5- Verify the public key

   6- Verify the old public key

   7- Verify the old signature

7.  Authentication during Query Resolving (stub to recursive)

   A DNS query request sent by a host, such as a client or a mail
   server, does not need to generate CGA-TSIG DATA because the resolver
   responds to anonymous queries. But the resolver’s response SHOULD
   contain the CGA-TSIG DATA field in order to enable this client to
   verify him. However, the client needs to include the TSIG RDATA and
   set the Algorithm type to CGA-TSIG. It MUST set the CGA-TSIG Len to
   zero. This allows the resolver to know when to include CGA-TSIG for
   verification process in client.

   In generation of the CGA-TSIG for a resolver, there is no need to
   include the IP tag. This is because resolvers do not usually have
   several IP addresses so the client does not need to keep several IP
   addresses for the same resolver.

7.1.  Verification process
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   When a resolver responds to the host’s query request for the first
   time, the client saves its public key in a file. This allows the
   client to verify this resolver when it changes its IP address due to
   privacy or security concerns. The steps 2 and 3 of the verification
   process are the same as those steps explained in section 5.1. These
   steps are as follows:

   1. Verify the signature

   The signature contained in CGA-TSIG DATA should be verified. This can
   be done by retrieving the public key and signature from CGA-TSIG DATA
   and using this public key to verify the signature. If the
   verification process is successful, then step 2 will be executed. If
   the verification fails, then the message should be discarded without
   further action.

   2. Check the Time Signed

   3. Execute the CGA verification

   4. Verify the Source IP address

   If the resolver’s source IP address is the same as that which is
   known for the host, then step 5 will be executed. Otherwise the
   message SHOULD be discarded without further action.

   5. Verify the public key

   The host checks whether or not the public key retrieved from CGA-TSIG
   DATA matches any public key that was previously saved in the storage
   where the public keys and IP addresses of resolvers are saved. If
   there is a match, then the message is processed. If not, then step 5
   will be executed.

   5. Verify the old public key

   If the old public key length is zero, then skip this step and discard
   the DNS query response without further action. If the old public key
   length is not zero, then the host will retrieve the old public key
   from CGA-TSIG DATA and will check whether or not it is the same as
   what was saved in the host’s storage where the public keys and IP
   addresses are stored. If it is the same, then step 6 will be
   executed, otherwise the message should be discarded without further
   action.

   6. Verify the old signature

   The old signature contained in CGA-TSIG DATA should be verified. This
   can be done by retrieving the old public key and old signature from
   CGA-TSIG DATA and then using this old public key to verify the old
   signature. If the verification is successful, then the DNS Message
   should be processed and the new public key should be replaced with
   the old public key of the resolver in the host. If the verification
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   process fails, then the message should be discarded without further
   action.

8.  Authentication during Query Resolving (Auth. to recursive)

   This verification step in the authentication of authoritative to
   recursive DNS server is the same as that explained in section 7.1. In
   this case the recursive DNS server does not need to generate CGA-TSIG
   DATA, but the root DNS server does need to include it in order to
   enable the recursive DNS server to verify it. The recursive DNS
   server needs to include the TSIG RDATA and set the Algorithm type to
   CGA-TSIG. It MUST set the CGA-TSIG Len to zero. This allows the root
   DNS server to know when to include CGA-TSIG for verification process
   in client.

9.  No cache parameters available or SeND is not supported

   In the case where there are no cache parameters available during the
   IP address generation, there are then two scenarios that come into
   play here. In the first scenario there is the case where the sender
   of a DNS message needs to generate a key pair and generate the
   CGA-TSIG data structure as explained in section 4. The node SHOULD
   skip the first section of the verification processes explained in
   section 5.1 , section 6.1 and section 7.1.

   In the second scenario, as explained in section 4.2 (step 1), it is
   not necessary for the server to support the SeND or CGA algorithm.
   The DNS administrator can make a one-time use of a CGA script to
   generate the CGA parameters and then manually configure the IP
   address of this DNS server. Then later, this DNS server can use those
   values as a means for authenticating other nodes. The verifier nodes
   also do not necessarily need to support SeND. They only need to
   support CGA-TSIG.

10.  How to obtain the IP address of resolvers

   Nodes can obtain the IP address of resolvers from the DHCPv6 server
   (that will not be secure) or from a DNS option of Router
   Advertisement message [RFC6106] after authenticating the router via a
   trusted authority. The IP addresses can be generated using CGA, SSAS
   or other mechanisms.

11.  CGA-TSIG Data confidentiality

   One possible solution to provide the DNS server with data
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   confidentiality during DNS update or other DNS query processes is the
   use of symmetric encryption with CGA-TSIG that is called CGA-TSIGe.
   In this case, the node MUST set the Algorithm type in TSIG RDATA to
   CGA-TSIGe.

11.1.  Generation of secret key

   To encrypt the DNS message using a symmetric algorithm for
   performance purposes, first, a node needs to retrieve the public key
   of the DNS server. It is possible to use the current DNSKEY RR (RFC
   3757) to send the public key of the DNS server. When the client wants
   to update any records on the DNS server, it first sends a DNS message
   and asks for the public key of the DNS server. DNS server then
   answers to this query and includes the public key contained in the
   DNSKEY RR with the SEP flag set to zero. This is done to indicate
   that it is not the zone key. The DNS server SHOULD include CGA-TSIG
   DATA so that the client can verify its IP address. In this case,
   there will be a binding between DNS server?s public key and its IP
   address. After a successful verification, the node then generates a
   16 byte random number and calls it a secret key. It encrypts this
   secret key using the DNS server public key. This allows only the DNS
   server to decrypt this secret key. In this case, the node sets the
   MAC in TSIG RDATA to the digest of secret key and set the MAC Size to
   the length of this digest. The DNS server knows what to do with MAC
   field from the Algorithm type in TSIG. If it is CGA-TSIGe, then it
   looks for an encrypted secret key.

11.2.  DNS message generation

   The node MUST encrypt all DNS message sections that required
   protections using the secret key generated in last section and AES
   symmetric algorithm. It excludes TSIG RDATA (That usually added in
   the additional section of the DNS messages) from the encryption text.
   They are explained in figure 4 and figure 5 of section 4.2 of this
   document.

11.3.  CGA-TSIGe DATA generation

   The CGA-TSIGe generation is the same as that explained in section 4.2
   of this document. But only the Algorithm type MUST be set to
   CGA-TSIGe.

11.4.  Process of encrypted DNS message

   When the DNS server receives the message from any node with TSIG
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   RDATA Algorithm type set to CGA-TSIGe, it execute the following
   steps:

   1- Retrieve the secret key

   The DNS server retrieves the secret key from MAC field. It then
   decrypts this secret key using its own private key.

   2- Decrypt the DNS message

   The DNS server decrypts the DNS server message using this secret key
   and the symmetric algorithm, which by default is AES.

   Then the DNS server can starts the verification process as explained
   in section 5.1, 6.1, 7.1 of this document.

12.  CGA-TSIG/CGA-TSIGe Applications

   The purpose of CGA-TSIG [7] is to minimize the amount of human
   intervention required to accomplish shared secret or key exchange
   and, as a byproduct, to reduce the process’s vulnerability to attacks
   introduced by human errors (during changing the DNS configuration)
   when Secure Neighbor Discovery (SeND) is used for addressing purposes
   or when SeND is not available for use.

   As explained in a prior section, CGA-TSIG can be used in different
   scenarios. For the FQDN update scenario CGA-TSIG is useful in dynamic
   networks where the nodes want to change their IP addresses frequently
   in order to maintain privacy. If the Dynamic Host Configuration
   Protocol (DHCP) is in use, then the DHCP server can do this update on
   behalf of the nodes in this network on a DNS server but in Neighbor
   Discovery Protocol (NDP), there is no feature available that allows
   the host security update process for its own FQDN. CGA-TSIG can be a
   solution.

   For the resolver scenario, usually the resolver can add the TSIG
   Resource Record (RR) to the DNS query response and use the CGA-TSIG
   algorithm in order to permit a useful authentication of the result.
   CGA-TSIG assures the client that the query response comes from the
   true originator and not from an attacker. It also ensures the
   integrity of the data by signing the data.

   There are several types of attack that CGA-TSIG can prevent. Here we
   will evaluate some of them. The use of CGA-TSIG will also reduce the
   number of messages needed in exchange between a client and a server
   in order to establish a secure channel. To exchange the shared secret
   between a DNS resolver and a client, when TSIG is used, a minimum of
   four messages are required for the establishment of a secure channel.
   Modifying RFC 2845 to use CGA-TSIG will decrease the number of
   messages needed in this exchange. The messages used in RFC 2930 (TKEY
   RR) are not needed when CGA-TSIG is used.
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12.1.  IP Spoofing

   During the DNS Update process or the query resolving process it is
   important that both communicating parties know that the one that they
   are communicating with is the actual owner of that IP address and
   that the messages are not being sent from a spoofed IP address. This
   can be accomplished by the use of the CGA algorithm which utilizes
   the node for IP address verification of other nodes.

12.2.  DNS Dynamic Update Spoofing

   Dynamic Update Spoofing is eliminated because the signature contains
   both the CGA parameters and the DNS update message. This will offer
   proof of the sender’s IP address ownership (CGA parameters) and the
   validity of the update message.

12.3.  Resolver Configuration Attack

   When using CGA-TSIG, the DNS server, or the client, would not need
   further configuration. This would reduce the possibility of human
   errors being introduced into the DNS configuration file. Since this
   type of attack is predicated on human error, the chances of it
   occurring, when this extension is used, are minimized.

12.4.  Exposing Shared Secret

   Using CGA-TSIG will decrease the number of manual steps required in
   generating the new shared secret and in exchanging it among the hosts
   where the old shared secret was shared between them for updating
   purposes. This manual step is required after a leakage has occurred
   of the shared secret to an attacker via any of these hosts.

12.5.  Replay attack

   Using the Time Signed value in the signature modifies the content of
   the signature each time the node generates and sends it to the DNS
   server. If the attacker tries to spoof this value with another
   timestamp, to show that the update message is current, the DNS server
   checks this message by verifying the signature. In this case, the
   verification process will fail thus also preventing the replay
   attack.
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12.6.  Data confidentiality

   Encrypting the whole DNS message will avoid the attacker to know the
   content of DNS messages. This will avoid zone walking and many other
   attacks on DNS RRs. This also provides the higher privacy for hosts
   that has DNS records.

13.  Security Considerations

   The approach explained in this draft, CGA-TSIG, is a solution for
   securing DNS messages from spoofing type attacks like those explained
   in section 3.

   A problem that may arise here concerns attacks against the CGA
   algorithm. In this section we will explain the possibility of such
   attacks against CGA [5] and explain the available solutions that we
   considered in this draft.

   a) Discover an Alternative Key Pair Hashing of the Victim’s Node
   Address

   In this case an attacker would have to find an alternate key pair
   hashing of the victim?s address. The probability for success of this
   type of attack will rely on the security properties of the underlying
   hash function, i.e., an attacker will need to break the second
   pre-image resistance of that hash function. The attacker will perform
   a second pre-image attack on a specific address in order to match
   other CGA parameters using Hash1 and Hash2. The cost of doing this is
   (2^59+1) * 2^(16*1). If the user uses a sufficient security level, it
   will be not feasible for an attacker to carry out this type of attack
   due to the cost involved. Changing the IP address frequently will
   also decrease the chance for this type of attack succeeding.

   b) DoS to Kill a CGA Node

   Sending a valid or invalid CGA signed message with high frequency
   across the network can keep the destination node(s) busy with the
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   verification process. This type of DoS attack is not specific to CGA,
   but it can be applied to any request-response protocol. One possible
   solution ,to mitigate this attack, is to add a controller to the
   verifier side of the process to determine how many messages a node
   has received over a certain period of time from a specific node. If a
   determined threshold rate is exceeded, then the node will stop
   further receipt of incoming messages from that node.

   c) CGA Privacy Implication

   Due to the high computational complexity necessary for the creation
   of a CGA, it is likely that once a node generates an acceptable CGA
   it will continue its use at that subnet. The result is that nodes
   using CGAs are still susceptible to privacy related attacks. One
   solution to these types of attacks is setting a lifetime for the
   address as explained in RFC 4941.

14.  IANA Considerations

   The IANA has allowed for choosing new algorithm(s) for use in the
   TSIG Algorithm name. Algorithm name refers to the algorithm described
   in this document. The requirement to have this name registered with
   IANA is specified.

   In section 4.1, Type should allow for the use of future optional
   algorithms with regard to SeND. The default value for CGA might be 1.
   Other algorithms would be assigned a new number sequentially. For
   example, a new algorithm called SSAS [4,5] could be assigned a value
   of 2.

   IANA also needs to define a numeric algorithm number for ECC. The
   similar way that is defined for RSA.

15.  Appendix

   - A sample key storage for CGA-TSIG

   create table cgatsigkeys (

   id           INT auto_increment,

   pubkey       VARCHAR(300),

   primary key(id)

   );
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   create table cgatsigips (

   id           INT auto_increment,

   idkey                INT,

   IP           VARCHAR(20),

   FOREIGN KEY (idkey) REFERENCES cgatsigkeys(id)

   primary key(id)

   );

   CGA-TSIG tables on mysql backend database

   - a sample format of stored parameters in the node

   For example, the modifier is stored as bytes and each byte might be
   separated by a comma (for example : 284,25,14,...). Algorithmtype is
   the algorithm used in signing the message. Zero is the default
   algorithm for RSA. Secval is the CGA Sec value that is, by default,
   one. GIP is the global IP address of this node (for example:
   2001:abc:def:1234:567:89a). oGIP is the old IP address of this node,
   before the generation of the new IP address. Keys contains the path
   where the CGA-TSIG algorithm can find the PEM format used for the
   public/private keys (for example: /home/myuser/keys.pem ).

   <?xml version="1.0" encoding="UTF-8"?>

   <Details>

   <CGATSIG>

   <modifier value=""/>

   <algorithmtype value="1.2.840.113549.1.1.1"/>

   <secval value="1"/>

   <GIP value=""/>

   <oGIP value=""/>

   <Keys value=""/>

   </CGATSIG>

   </Details>

Rafiee, et al.      Expires August 15, 2014                    [Page 23]



INTERNET DRAFT             TSIG using CGA in IPv6      February 15, 2014

   XML file contains the cached DATA
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