
NETMOD L. Lhotka
Internet-Draft CZ.NIC
Intended status: Standards Track September 23, 2013
Expires: March 27, 2014

 Modeling JSON Text with YANG
 draft-lhotka-netmod-yang-json-02

Abstract

 This document defines rules for presenting configuration and
 operational state data defined using YANG as JSON text. It does so
 by specifying a procedure for translating the subset of YANG-
 compatible XML documents to JSON text, and vice versa.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on March 27, 2014.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Lhotka Expires March 27, 2014 [Page 1]

Internet-Draft Modeling JSON with YANG September 2013

Table of Contents

 1. Introduction . 3
 2. Terminology and Notation 5
 3. Specification of the Translation Procedure 6
 3.1. Names and Namespaces 7
 3.2. Mapping XML Elements to JSON Objects 9
 3.2.1. The "leaf" Data Node 9
 3.2.2. The "container" Data Node 9
 3.2.3. The "leaf-list" Data Node 10
 3.2.4. The "list" Data Node 10
 3.2.5. The "anyxml" Data Node 11
 3.3. Mapping YANG Datatypes to JSON Values 12
 3.3.1. Numeric Datatypes 12
 3.3.2. The "string" Type 12
 3.3.3. The "boolean" Type 12
 3.3.4. The "enumeration" Type 12
 3.3.5. The "bits" Type 12
 3.3.6. The "binary" Type 12
 3.3.7. The "leafref" Type 13
 3.3.8. The "identityref" Type 13
 3.3.9. The "empty" Type 13
 3.3.10. The "union" Type 13
 3.3.11. The "instance-identifier" Type 14
 3.4. IANA Considerations 14
 3.5. Security Considerations 14
 3.6. Acknowledgments . 14
 4. References . 15
 4.1. Normative References 15
 4.2. Informative References 15
 Appendix A. A Complete Example 16
 Author’s Address . 19

Lhotka Expires March 27, 2014 [Page 2]

Internet-Draft Modeling JSON with YANG September 2013

1. Introduction

 The aim of this document is define rules for presenting configuration
 and operational state data defined in the YANG data modeling
 language [RFC6020] as JavaScript Object Notation (JSON) text [JSON].
 The result can be potentially applied in two different ways:

 1. JSON may be used instead of the standard XML [XML] encoding in
 the context of the NETCONF protocol [RFC6241] and/or with
 existing data models expressed in YANG. An example application
 is the RESTCONF Protocol [RESTCONF].

 2. Other documents that choose JSON to represent structured data can
 use YANG for defining the data model, i.e., both syntactic and
 semantic constraints that the data have to satisfy.

 JSON mapping rules could be specified in a similar way as the XML
 mapping rules in [RFC6020]. This would however require solving
 several problems. To begin with, YANG uses XPath [XPath] quite
 extensively, but XPath is not defined for JSON and such a definition
 would be far from straightforward.

 In order to avoid these technical difficulties, this document employs
 an alternative approach: it defines a relatively simple procedure
 which allows for translating the subset of XML that can be modeled
 using YANG to JSON, and vice versa. Consequently, validation of a
 JSON text against a data model can done by translating the JSON text
 to XML, which is then validated according to the rules stated in
 [RFC6020].

 The translation procedure is adapted to YANG specifics and
 requirements, namely:

 1. The translation is driven by a concrete YANG data model and uses
 information about data types to achieve better results than
 generic XML-JSON translation procedures.

 2. Various document types are supported, namely configuration data,
 configuration + state data, RPC input and output parameters, and
 notifications.

 3. XML namespaces specified in the data model are mapped to
 namespaces of JSON objects. However, explicit namespace
 identifiers are rarely needed in JSON text.

 4. Translation of XML attributes, mixed content, comments and
 processing instructions is outside the scope of this document.

Lhotka Expires March 27, 2014 [Page 3]

Internet-Draft Modeling JSON with YANG September 2013

 Item 1 above also means that, depending on the data model, the same
 XML element can be translated to different JSON objects. For
 example,

 <foo>123</foo>

 is translated to

 "foo": 123

 if the "foo" node is defined as a leaf with the "uint8" datatype, or
 to

 "foo": ["123"]

 if the "foo" node is defined as a leaf-list with the "string"
 datatype, and the <foo> element has no siblings of the same name.

Lhotka Expires March 27, 2014 [Page 4]

Internet-Draft Modeling JSON with YANG September 2013

2. Terminology and Notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 The following terms are defined in [RFC6020]:

 o anyxml

 o augment

 o container

 o data node

 o data tree

 o datatype

 o feature

 o identity

 o instance identifier

 o leaf

 o leaf-list

 o list

 o module

 o submodule

 The following terms are defined in [XMLNS]:

 o local name

 o prefixed name

 o qualified name

Lhotka Expires March 27, 2014 [Page 5]

Internet-Draft Modeling JSON with YANG September 2013

3. Specification of the Translation Procedure

 The translation procedure defines a 1-1 correspondence between the
 subset of YANG-compatible XML documents and JSON text. This means
 that the translation can be applied in both directions and is always
 invertible.

 The translation procedure is applicable only to data hierarchies that
 are modelled by a YANG data model. An input XML document MAY contain
 enclosing elements representing NETCONF "Operations" and "Messages"
 layers. However, these enclosing elements are ignored by the
 translation procedure and do not appear in the resulting JSON
 document.

 Any YANG-compatible XML document can be translated, except documents
 with mixed content. This is only a minor limitation since mixed
 content is marginal in YANG - it is allowed only in "anyxml" nodes.

 The following sections specify rules mainly for translating XML
 documents to JSON text. Rules for the inverse translation are stated
 only where necessary, otherwise they can be easily inferred.

 REQUIRED parameters of the translation procedure are:

 o YANG data model consisting of a set of YANG modules,

 o type of the input document,

 o optional features (defined via the "feature" statement) that are
 considered active.

 The permissible types of input documents are listed in Table 1
 together with the corresponding part of the data model that is used
 for the translation.

Lhotka Expires March 27, 2014 [Page 6]

Internet-Draft Modeling JSON with YANG September 2013

 +------------------------------+--------------------------------+
 | Document Type | Data Model Section |
 +------------------------------+--------------------------------+
 | configuration and state data | main data tree |
 | | |
 | configuration | main data tree ("config true") |
 | | |
 | RPC input parameters | "input" nodes under "rpc" |
 | | |
 | RPC output parameters | "output" nodes under "rpc" |
 | | |
 | notification | "notification" nodes |
 +------------------------------+--------------------------------+

 Table 1: YANG Document Types

 A particular application MAY decide to support only a subset of
 document types from Table 1. For instance, RESTCONF Protocol
 [RESTCONF] does not use notifications.

 XML documents can be translated to JSON text only if they are valid
 instances of the YANG data model and selected document type, also
 taking into account the active features, if there are any.

 The resulting JSON document is always a single object ([JSON],
 Sec. 4) whose members are translated from the original XML document
 using the rules specified in the following sections.

3.1. Names and Namespaces

 The local part of a JSON name is always identical to the local name
 of the corresponding XML element.

 Each JSON name lives in a namespace which is uniquely identified by
 the name of the YANG module where the corresponding data node is
 defined. If the data node is defined in a submodule, then the
 namespace identifier is the name of the main module to which the
 submodule belongs. The translation procedure MUST correctly map YANG
 namespace URIs to YANG module names and vice versa.

 The namespace SHALL be expressed in JSON text by prefixing the local
 name in the following way:

 <module name>:<local name>

 Figure 1: Encoding a namespace identifier with a local name.

 The namespace identifier MUST be used for local names that are

Lhotka Expires March 27, 2014 [Page 7]

Internet-Draft Modeling JSON with YANG September 2013

 ambiguous, i.e., whenever the data model permits a sibling node with
 the same local name. Otherwise, the namespace identifier is
 OPTIONAL.

 For example, consider the following YANG module:

 module foomod {
 namespace "http://example.com/foomod";
 prefix "fm";
 container foo {
 leaf bar {
 type boolean;
 }
 }
 }

 If the data model consists only of this module, then the following is
 a valid JSON document:

 {
 "foo": {
 "bar": true
 }
 }

 Now, assume the container "foo" is augmented from another module:

 module barmod {
 namespace "http://example.com/barmod";
 prefix "bm";
 import foomod {
 prefix fm;
 }
 augment "/fm:foo" {
 leaf bar {
 type uint8;
 }
 }
 }

 In the data model combining "foomod" and "barmod", we have two
 sibling nodes with the same local name, namely "bar". In this case,
 a valid JSON document has to specify an explicit namespace identifier
 (module name) for both leaves:

Lhotka Expires March 27, 2014 [Page 8]

Internet-Draft Modeling JSON with YANG September 2013

 {
 "foo": {
 "foomod:bar": true,
 "barmod:bar": 123
 }
 }

3.2. Mapping XML Elements to JSON Objects

 XML elements that are modelled as YANG data nodes are translated to a
 name/value pair where the name is formed from the name of the XML
 element using the rules in Section 3.1. The value depends on the
 type of the data node as specified in the following sections.

3.2.1. The "leaf" Data Node

 An XML element that is modeled as YANG leaf is translated to a name/
 value pair and the type of the value is derived from the YANG
 datatype of the leaf (see Section 3.3 for the datatype mapping
 rules).

 Example: For the leaf node definition

 leaf foo {
 type uint8;
 }

 the XML element

 <foo>123</foo>

 corresponds to the JSON name/value pair

 "foo": 123

3.2.2. The "container" Data Node

 An XML element that is modeled as YANG container is translated to a
 name/object pair.

 Example: For the container node definition

 container bar {
 leaf foo {
 type uint8;
 }
 }

Lhotka Expires March 27, 2014 [Page 9]

Internet-Draft Modeling JSON with YANG September 2013

 the XML element

 <bar>
 <foo>123</foo>
 </bar>

 corresponds to the JSON name/value pair

 "bar": {
 "foo": 123
 }

3.2.3. The "leaf-list" Data Node

 A sequence of one or more sibling XML elements with the same
 qualified name that is modeled as YANG leaf-list is translated to a
 name/array pair, and the array elements are primitive values whose
 type depends on the datatype of the leaf-list (see Section 3.3).

 Example: For the leaf-list node definition

 leaf-list foo {
 type uint8;
 }

 the XML elements

 <foo>123</foo>
 <foo>0</foo

 corresponds to the JSON name/value pair

 "foo": [123, 0]

3.2.4. The "list" Data Node

 A sequence of one or more sibling XML elements with the same
 qualified name that is modeled as YANG list is translated to a name/
 array pair, and the array elements are JSON objects.

 Unlike the XML encoding, where the list keys are required to come
 before any other siblings, and in the order specified by the data
 model, the order of members within a JSON list entry is arbitrary,
 because JSON objects are fundamentally unordered collections of
 members.

 Example: For the list node definition

Lhotka Expires March 27, 2014 [Page 10]

Internet-Draft Modeling JSON with YANG September 2013

 list bar {
 key foo;
 leaf foo {
 type uint8;
 }
 leaf baz {
 type string;
 }
 }

 the XML elements

 <bar>
 <foo>123</foo>
 <baz>zig</baz>
 </bar>
 <bar>
 <foo>0</foo>
 <baz>zag</baz>
 </bar>

 corresponds to the JSON name/value pair

 "bar": [
 {
 "foo": 123,
 "baz": "zig"
 },
 {
 "foo": 0,
 "baz": "zag"
 }
]

3.2.5. The "anyxml" Data Node

 An XML element that is modeled as a YANG anyxml node is translated to
 a name/object pair. The content of such an element is not modelled
 by YANG, and there may not be a straightforward mapping to JSON text
 (e.g., if it is a mixed XML content). Therefore, translation of
 anyxml contents is necessarily application-specific and outside the
 scope of this document.

 Example: For the anyxml node definition

 anyxml bar;

 the XML element

Lhotka Expires March 27, 2014 [Page 11]

Internet-Draft Modeling JSON with YANG September 2013

 <bar>
 <p xmlns="http://www.w3.org/1999/xhtml">
 This is very cool.
 </p>
 </bar>

 may be translated to the following JSON name/value pair:

 {
 "bar": {
 "p": "This is *very* cool."
 }
 }

3.3. Mapping YANG Datatypes to JSON Values

3.3.1. Numeric Datatypes

 A value of one of the YANG numeric datatypes ("int8", "int16",
 "int32", "int64", "uint8", "uint16", "uint32", "uint64" and
 "decimal64") is mapped to a JSON number using the same lexical
 representation.

3.3.2. The "string" Type

 A "string" value is mapped to an identical JSON string, subject to
 JSON encoding rules.

3.3.3. The "boolean" Type

 A "boolean" value is mapped to the corresponding JSON value ’true’ or
 ’false’.

3.3.4. The "enumeration" Type

 An "enumeration" value is mapped in the same way as a string except
 that the permitted values are defined by "enum" statements in YANG.

3.3.5. The "bits" Type

 A "bits" value is mapped to a string identical to the lexical
 representation of this value in XML, i.e., space-separated names
 representing the individual bit values that are set.

3.3.6. The "binary" Type

 A "binary" value is mapped to a JSON string identical to the lexical
 representation of this value in XML, i.e., base64-encoded binary

Lhotka Expires March 27, 2014 [Page 12]

Internet-Draft Modeling JSON with YANG September 2013

 data.

3.3.7. The "leafref" Type

 A "leafref" value is mapped according to the same rules as the type
 of the leaf being referred to.

3.3.8. The "identityref" Type

 An "identityref" value is mapped to a string representing the
 qualified name of the identity. Its namespace MAY be expressed as
 shown in Figure 1. If the namespace part is not present, the
 namespace of the name of the JSON object containing the value is
 assumed.

3.3.9. The "empty" Type

 An "empty" value is mapped to ’[null]’, i.e., an array with the
 ’null’ value being its only element.

 This representation was chosen instead of using simply ’null’ in
 order to facilitate the use of empty leafs in common programming
 languages. When used in a boolean context, the ’[null]’ value,
 unlike ’null’, evaluates to ’true’.

 Example: For the leaf node definition

 leaf foo {
 type empty;
 }

 the XML element

 <foo/>

 corresponds to the JSON name/value pair

 "foo": [null]

3.3.10. The "union" Type

 YANG "union" type represents a choice among multiple alternative
 types. The actual type of the XML value MUST be determined using the
 procedure specified in Sec. 9.12 of [RFC6020] and the mapping rules
 for that type are used.

 For example, consider the following YANG definition:

Lhotka Expires March 27, 2014 [Page 13]

Internet-Draft Modeling JSON with YANG September 2013

 leaf-list bar {
 type union {
 type uint16;
 type string;
 }
 }

 The sequence of three XML elements

 <bar>6378</bar>
 <bar>14.5</bar>
 <bar>infinity</bar>

 will then be translated to this name/array pair:

 "bar": [6378, "14.5", "infinity"]

3.3.11. The "instance-identifier" Type

 An "instance-identifier" value is a string representing a simplified
 XPath specification. It is mapped to an analogical JSON string in
 which all occurrences of XML namespace prefixes are either removed or
 replaced with the corresponding module name according to the rules of
 Section 3.1.

 When translating such a value from JSON to XML, all components of the
 instance-identifier MUST be given appropriate XML namespace prefixes.
 It is RECOMMENDED that these prefixes be those defined via the
 "prefix" statement in the corresponding YANG modules.

3.4. IANA Considerations

 TBD.

3.5. Security Considerations

 TBD.

3.6. Acknowledgments

 The author wishes to thank Andy Bierman, Martin Bjorklund and Phil
 Shafer for their helpful comments and suggestions.

Lhotka Expires March 27, 2014 [Page 14]

Internet-Draft Modeling JSON with YANG September 2013

4. References

4.1. Normative References

 [JSON] Bray, T., Ed., "The JSON Data Interchange Format",
 draft-ietf-json-rfc4627bis-03 (work in progress),
 September 2013.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 Network Configuration Protocol (NETCONF)", RFC 6020,
 September 2010.

 [RFC6241] Enns, R., Bjorklund, M., Schoenwaelder, J., and A.
 Bierman, "NETCONF Configuration Protocol", RFC 6241,
 June 2011.

 [XML] Bray, T., Paoli, J., Sperberg-McQueen, C., Maler, E., and
 F. Yergeau, "Extensible Markup Language (XML) 1.0 (Fifth
 Edition)", World Wide Web Consortium Recommendation REC-
 xml-20081126, November 2008,
 <http://www.w3.org/TR/2006/REC-xml-20060816>.

 [XMLNS] Bray, T., Hollander, D., Layman, A., Tobin, R., and H.
 Thompson, "Namespaces in XML 1.0 (Third Edition)", World
 Wide Web Consortium Recommendation REC-xml-names-20091208,
 December 2009,
 <http://www.w3.org/TR/2009/REC-xml-names-20091208>.

4.2. Informative References

 [IF-CFG] Bjorklund, M., "A YANG Data Model for Interface
 Management", draft-ietf-netmod-interfaces-cfg-12 (work in
 progress), July 2013.

 [RESTCONF]
 Bierman, A., Bjorklund, M., Watsen, K., and R. Fernando,
 "RESTCONF Protocol", draft-bierman-netconf-restconf-01
 (work in progress), September 2013.

 [XPath] Clark, J., "XML Path Language (XPath) Version 1.0", World
 Wide Web Consortium Recommendation REC-xpath-19991116,
 November 1999,
 <http://www.w3.org/TR/1999/REC-xpath-19991116>.

Lhotka Expires March 27, 2014 [Page 15]

Internet-Draft Modeling JSON with YANG September 2013

Appendix A. A Complete Example

 The JSON document shown below was translated from a reply to the
 NETCONF <get> request that can be found in Appendix D of [IF-CFG].
 The data model is a combination of two YANG modules: "ietf-
 interfaces" and "ex-vlan" (the latter is an example module from
 Appendix C of [IF-CFG]). The "if-mib" feature defined in the "ietf-
 interfaces" module is considered to be active.

 {
 "interfaces": {
 "interface": [
 {
 "name": "eth0",
 "type": "ethernetCsmacd",
 "enabled": false
 },
 {
 "name": "eth1",
 "type": "ethernetCsmacd",
 "enabled": true,
 "vlan-tagging": true
 },
 {
 "name": "eth1.10",
 "type": "l2vlan",
 "enabled": true,
 "base-interface": "eth1",
 "vlan-id": 10
 },
 {
 "name": "lo1",
 "type": "softwareLoopback",
 "enabled": true
 }
]
 },
 "interfaces-state": {
 "interface": [
 {
 "name": "eth0",
 "type": "ethernetCsmacd",
 "admin-status": "down",
 "oper-status": "down",
 "if-index": 2,
 "phys-address": "00:01:02:03:04:05",
 "statistics": {
 "discontinuity-time": "2013-04-01T03:00:00+00:00"

Lhotka Expires March 27, 2014 [Page 16]

Internet-Draft Modeling JSON with YANG September 2013

 }
 },
 {
 "name": "eth1",
 "type": "ethernetCsmacd",
 "admin-status": "up",
 "oper-status": "up",
 "if-index": 7,
 "phys-address": "00:01:02:03:04:06",
 "higher-layer-if": [
 "eth1.10"
],
 "statistics": {
 "discontinuity-time": "2013-04-01T03:00:00+00:00"
 }
 },
 {
 "name": "eth1.10",
 "type": "l2vlan",
 "admin-status": "up",
 "oper-status": "up",
 "if-index": 9,
 "lower-layer-if": [
 "eth1"
],
 "statistics": {
 "discontinuity-time": "2013-04-01T03:00:00+00:00"
 }
 },
 {
 "name": "eth2",
 "type": "ethernetCsmacd",
 "admin-status": "down",
 "oper-status": "down",
 "if-index": 8,
 "phys-address": "00:01:02:03:04:07",
 "statistics": {
 "discontinuity-time": "2013-04-01T03:00:00+00:00"
 }
 },
 {
 "name": "lo1",
 "type": "softwareLoopback",
 "admin-status": "up",
 "oper-status": "up",
 "if-index": 1,
 "statistics": {
 "discontinuity-time": "2013-04-01T03:00:00+00:00"

Lhotka Expires March 27, 2014 [Page 17]

Internet-Draft Modeling JSON with YANG September 2013

 }
 }
]
 }
 }

Lhotka Expires March 27, 2014 [Page 18]

Internet-Draft Modeling JSON with YANG September 2013

Author’s Address

 Ladislav Lhotka
 CZ.NIC

 Email: lhotka@nic.cz

Lhotka Expires March 27, 2014 [Page 19]

