
Transport Area P. Hurtig, Ed.
Internet-Draft Karlstad University
Intended status: Informational S. Gjessing
Expires: June 18, 2014 M. Welzl
 University of Oslo
 M. Sustrik

 December 15, 2013

 Transport APIs
 draft-hurtig-tsvwg-transport-apis-00

Abstract

 Commonly used networking APIs are currently limited by the transport
 layer’s inability to expose services instead of protocols. An API/
 application/user is therefore forced to use exactly the services that
 are implemented by the selected transport. This document surveys
 networking APIs and discusses how they can be improved by a more
 expressive transport layer that hides and automatizes the choice of
 the transport protocol.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on June 18, 2014.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of

Hurtig, et al. Expires June 18, 2014 [Page 1]

Internet-Draft Transport APIs December 2013

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 1.1. Requirements Language 3
 2. Services Offered by IETF Transports 3
 3. General Networking APIs 4
 3.1. ZeroMQ . 5
 3.2. nanomsg . 6
 3.3. enet . 6
 3.4. Java Message Service 7
 3.5. Chrome Network Stack 7
 3.6. CFNetwork . 8
 3.7. Apache Portable Runtime 8
 3.8. VirtIO . 8
 4. Networking APIs with Exposed Transport 8
 4.1. Berkeley Sockets . 8
 4.2. Java Libraries . 8
 4.3. Netscape Portable Runtime 9
 4.4. Infiniband Verbs . 10
 4.5. Input/Output Completion Port 10
 5. Security Considerations 10
 6. IANA Considerations . 10
 7. Acknowledgments . 10
 8. Comments Solicited . 10
 9. References . 10
 9.1. Normative References 10
 9.2. Informative References 11
 Authors’ Addresses . 12

1. Introduction

 The intention of this document is to create an understanding of some
 commonly used network APIs and how the mechanisms they provide could
 possibly be enhanced via a richer set of transport services. A non-
 comprehensive list of APIs is given, along with a brief description
 and a discussion of how they relate to services provided by current
 transports.

 To understand what tools a transport system could have available to
 better realize mechanisms that higher level APIs offer, the next
 section gives a high-level (and most certainly incomplete) overview

Hurtig, et al. Expires June 18, 2014 [Page 2]

Internet-Draft Transport APIs December 2013

 of services offered by transports that have been published by the
 IETF or are currently being proposed.

 This overview is followed by two sections describing different types
 of transport APIs: general APIs and APIs exposing the underlying
 transport.

 The general APIs can intuitively benefit from a richer set of
 transport services as they do not expose the underlying transport to
 the application. Section 3 describe a subset of these APIs and
 analyze how they can benefit from transport services. The complexity
 of these APIs range from providing simple transport interfaces to
 providing advanced communication libraries utilizing message-oriented
 middleware. API-wise there are two broad classes of such middleware:
 centralized solutions where a server manages the communication and
 decentralized ones where the endpoints communicate directly.
 Although there is no standard interface for these types of middleware
 the JMS API (see Section 3.4) can be thought of as the canonical API
 for centralized solutions and the BSD socket API, as implemented by
 nanomsg (see Section 3.2), for the decentralized.

 APIs that expose the underlying transport, including e.g. BSD
 sockets, differ a lot from general APIs as they both require an
 explicit choice of transport, and then expose this choice. This is a
 significant limitation in the context of transport services, as an
 explicit choice of transport also limits the amount of services that
 can be used. It is, however, possible to enhance this type of APIs
 as some transports provide services that are not fully exposed to
 applications. Section 4 explains how such services can be used and
 provides descriptions of the most common APIs and how they can be
 enhanced.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

2. Services Offered by IETF Transports

 From [WJG11], TCP [RFC0793] [RFC5681], UDP [RFC0768], UDP-Lite
 [RFC3828], SCTP [RFC4960] and DCCP [RFC4340] offer various
 combinations of: TCP-like congestion control / "smooth" congestion
 control (which is expected to have less jitter); application PDU
 bundling (which is the mechanism called "Nagle" in TCP); error
 detection (using a checksum with full or partial payload coverage);
 reliability (yes/no); delivery order. The point of not always
 requiring full reliability and ordered delivery is that these

Hurtig, et al. Expires June 18, 2014 [Page 3]

Internet-Draft Transport APIs December 2013

 mechanisms can come at the cost of extra delay which is unnecessary
 if these properties of the data transmission are not needed. After
 the publication of [WJG11], some more features were defined, e.g.
 SCTP now also offers partial reliability using a timer.

 MPTCP [RFC6824] and SCTP offer multihoming for improved robustness
 (as a backup in case a path fails), which is a mechanism that is
 listed in [WJG11] but could perhaps be hidden from an application.
 Similarly, it was shown in [WNG11] that the benefits of multi-
 streaming (mapping multiple application streams onto one connection,
 or "association" in SCTP terminology) can be exploited without
 exposing this functionality to an application. Because of this
 assumption, multi-streaming was not included as a service in [WJG11].

 MPTCP and CMT-SCTP also use multiple paths to achieve better
 performance, at the possible cost of some extra delay and jitter; as
 discussed in Appendix A.2 of [RFC6897], an advanced MPTCP API could
 allow applications to provide high-level guidance about its
 requirements in terms of high bandwidth, low latency and jitter
 stability, or high reliability.

 The newly proposed Minion [MINION] has a somewhat different way of
 translating some of the above mentioned lower-level transport
 mechanisms (e.g. multi-streaming or partial reliability) into
 application services. It provides message cancellation and has a
 notion of superseding messages, i.e. a later message rendering a
 prior one unnecessary. Ordered delivery is provided according to
 pre-specified message dependencies, and a request-reply communication
 model is offered (i.e. a message can be a reply to another message,
 i.e. address the original message’s reply-handler).

 When applying multi-streaming, priorities between streams become a
 mere scheduling decision. In the absence of multi-streaming, there
 is at least one congestion control method in an RFC that is more
 aggressive than standard Reno-like TCP (HighSpeed TCP [RFC3649]), and
 there is also the more recent LEDBAT [RFC6817] which is specifically
 designed for low-priority "scavenger" traffic. All in all, it is
 probably correct to say that IETF transports are likely to be able to
 honor priorities between data streams in one way or another.

3. General Networking APIs

 This section introduces and provides an analysis of commonly used
 networking APIs in the context of transport services. That is, how
 are these APIs currently designed and how, if at all, can these APIs
 be simplified and/or enhanced given a transport API that exposes all
 services provided by the operating system.

Hurtig, et al. Expires June 18, 2014 [Page 4]

Internet-Draft Transport APIs December 2013

 Please note that the current list of APIs is incomplete and rather
 arbitrary. Feedback is very welcome!

3.1. ZeroMQ

3.1.1. Description

 ZeroMQ is a messaging library that simplifies and improves the usage
 of sockets. It operates on messages, and has embedded support for a
 variety of communication styles including e.g. request/reply or pub/
 sub. What this means is that, for instance, a socket of type
 "request" can issue one request, and then a reply must arrive on that
 socket; any other sequence of communication will produce an error
 message. ZeroMQ tries to be transport agnostic and currently works
 on top of IPC, TCP and PGM.

 Internally, ZeroMQ’s functionality largely depends on buffering
 mechanisms. For instance, in contrast to native Berkeley sockets, a
 single server socket can be used to read and respond to requests from
 multiple clients. To achieve this, ZeroMQ must accept incoming
 requests and read their data as they arrive from multiple clients,
 buffer them, and upon the application’s request hand the data over to
 the application using fair queuing.

3.1.2. Analysis

 Like Minion, ZeroMQ introduces delimiters into a TCP stream to send
 frames of a given size using the ZeroMQ Message Transport Protocol
 [ZMTP]. Some form of multi-streaming is intended for the future:
 According to the FAQ [ZMQFAQ] page, having multiple sockets share a
 single TCP connection is being added to the next version of the ZMTP
 protocol. Today one can accomplish this "using a proxy that sits
 between the external TCP address, and your tasks".

 Multi-streaming over standard TCP creates an RTT of HOL blocking
 delay for all out-of-order packets that arrive at the receiver’s
 buffer. This problem also occurs with e.g. SPDY [SPDYWP] [SPDYID]
 over TCP; just like SPDY works better over QUIC [QUIC], ZeroMQ can be
 made to work better over a transport that natively supports multi-
 streaming.

 Because ZeroMQ is implemented as a user space library, it cannot
 multiplex streams from multiple processes. This can be a significant
 drawback when many small stand-alone services are co-located on the
 same host. In contrast, in line with the way TCP and UDP are
 currently implemented, it is likely that broader transport services
 would be provided monolithically, e.g. in the system’s kernel,
 thereby eliminating this problem.

Hurtig, et al. Expires June 18, 2014 [Page 5]

Internet-Draft Transport APIs December 2013

 The notion of request and reply sockets seems to be similar in Minion
 and in ZeroMQ. Hence, mapping such ZeroMQ sockets onto Minion is
 probably an efficient way to implement them. One may wonder where to
 draw the boundaries between a transport like Minion and a middleware
 or library like ZeroMQ, i.e. is it really more efficient to provide
 request-reply functionality in the transport layer? Conceptually,
 many of Minion’s functions (e.g., message cancellation and
 superseding messages) relate to having direct access to the sender
 and receiver-side buffers, which is otherwise limited depending on
 the TCP implementation, and by standard TCP’s in-order-delivery
 requirement. At the same time, ZeroMQ’s functions have to do with
 controlling the sender and receiver-side buffers; it therefore seems
 natural that transports such as Minion could improve the performance
 of ZeroMQ.

 Notably, some transports might turn out to be a poor match for
 ZeroMQ. For example, MPTCP requires a larger receiver buffer than
 standard TCP due to the larger expected reordering. However, if
 ZeroMQ’s ZMTP protocol does or will (in accordance with the FAQ
 mentioned above) multiplex data from several sockets over a single
 TCP stream, this might create extra delay before the the receiver-
 side ZeroMQ instance can take the data from the buffer and hand it
 over to the application.

3.2. nanomsg

3.2.1. Description

3.2.2. Analysis

3.3. enet

3.3.1. Description

 enet started out as a networking layer for a first-person shooter
 where low latency communication with very frequent data transmission
 was needed. It is a lightweight library that is entirely based on
 UDP, which it extends with a set of optional features such as
 reliability and in-order packet delivery.

 Its features include connection management (monitoring of a
 connection with frequent pings), optional reliability, sequencing
 (mandatory for reliable transmission), fragmentation and reassembly,
 aggregation, flow control. It gives its user control over the packet
 size (a function call allows a packet to be resized), and sequential
 delivery is enforced.

Hurtig, et al. Expires June 18, 2014 [Page 6]

Internet-Draft Transport APIs December 2013

 Reliability in enet is a binary choice; it does not allow providing a
 deadline or maximum number of retransmissions per packet; if a per-
 host-configurable number of retries is exceeded, the host is
 disconnected.

 Because HOL blocking delay can arise when guaranteeing sequential
 delivery, enet also has a form of multi-streaming (called
 "channels").

 enet provides window-based flow control for reliable packets and a
 dynamic throttle that drops packets from the send buffer if the
 network is congested based on a given probability. This probability
 is based on measuring the RTT to a peer; if the current RTT is
 significantly greater than the mean RTT, the probability is increased
 up to a configurable maximum value. Each host’s bandwidth limits are
 taken into account as an upper bound for the bandwidth used by enet.

 A broadcast function can be used to send a packet to all currently
 connected peers on a host.

3.3.2. Analysis

 Many of the functions in enet resemble functions found in SCTP and
 Minion -- e.g., control over the packet size, optional reliability,
 multi-streaming. Since enet intends to be "thin", simply using these
 protocols instead probably would not make it better. However, enet’s
 goal being low latency, it could benefit from other functions such as
 SCTP’s and MPTCP’s multi-path capability (picking the lower latency
 path). The congestion control also appears to be rather rudimentary
 -- there are known issues with using the RTT as a congestion signal
 (for one, it is incapable of distinguishing between congestion on the
 forward and backward path). Probably, using the congestion control
 embedded in an IETF-standardized protocol could improve enet’s
 performance under certain situations. Finally, the "broadcast"
 functionality could benefit from multicast.

3.4. Java Message Service

3.4.1. Description

3.4.2. Analysis

3.5. Chrome Network Stack

3.5.1. Description

3.5.2. Analysis

Hurtig, et al. Expires June 18, 2014 [Page 7]

Internet-Draft Transport APIs December 2013

3.6. CFNetwork

3.6.1. Description

3.6.2. Analysis

3.7. Apache Portable Runtime

3.7.1. Description

3.7.2. Analysis

3.8. VirtIO

3.8.1. Description

3.8.2. Analysis

4. Networking APIs with Exposed Transport

 Much of the motivation behind the transport services concept comes
 from the limitations posed by networking APIs that require the user
 to explicitly chose a transport, and thus confine itself to a certain
 number of "services". It is, however, possible to include such APIs
 in the transport services concept if mechanisms can be hidden from
 the application [WNG11].

 This section describes a number of commonly used APIs that expose the
 underlying transport and analyzes how these particular APIs could be
 improved with transport services.

4.1. Berkeley Sockets

4.1.1. Description

4.1.2. Analysis

4.2. Java Libraries

4.2.1. Description

 The Java library has classes to handle TCP and UDP sockets. There is
 also a separate library, not included with the regular Java
 distribution, that interfaces SCTP.

 The java.net library contains the two classes Socket and ServerSocket
 that handle TCP sockets. These sockets write a message at a time,
 but read character streams. A ServerSocket contains a method called

Hurtig, et al. Expires June 18, 2014 [Page 8]

Internet-Draft Transport APIs December 2013

 "accept", that waits for a connection request from a client. The
 class DatagramSocket handles UDP-sockets. It "receive"s and "send"s
 objects of the class DatagramPacket that contain characters. The
 "close" method closes the connection. Finally the library contains a
 class called NetworkInterface that can be used to query the operating
 system about available network interfaces.

 The separate Java library that handle SCTP a is called
 com.sun.nio.sctp. Similar to the TCP-sockets there are classes
 called SctpChannel and SctpServerChannel. An instance of the former
 can control a single association only, while an instance of the
 latter can control multiple associations. Instances of the class
 SctpMultiChannel can also control multiple associations.

4.2.2. Analysis

 The Java socket api is very similar to the Berkeley socket api. A
 main difference is that the transport to be used is defined as a
 parameter to the socket() call in the Berkeley socket api, while in
 Java different classes is used for the different protocols. There is
 no well known support for DCCP in Java.

 When a socket object is created it can either be connected
 immediately, or the "connect" method can be called later. If not
 already bound, a socket is bound to a local address by calling the
 method "bind". To shut down the connection, "close" is called. If
 an application calls "receive" on a datagram socket, the method call
 will block the application until a packet is received, which may
 never happen using an unreliable transfer. When operations on
 Sockets fail, an exception is thrown.

 The SCTP interface is event driven. When the SCTP stack wants to
 notify the applications, it generates a Notification object. This
 object is passed as parameter to the method "handleNotification" in
 an instance of the class NotificationHandler. An association will be
 implicitly set up by a send or receive method call if there is no
 current association. The SCTP library is only supporter at run time
 by Linux and Solaris.

4.3. Netscape Portable Runtime

4.3.1. Description

Hurtig, et al. Expires June 18, 2014 [Page 9]

Internet-Draft Transport APIs December 2013

4.3.2. Analysis

4.4. Infiniband Verbs

4.4.1. Description

4.4.2. Analysis

4.5. Input/Output Completion Port

4.5.1. Description

4.5.2. Analysis

5. Security Considerations

 TBD

6. IANA Considerations

 At this point, the memo includes no request to IANA.

7. Acknowledgments

 Hurtig, Gjessing, and Welzl are supported by RITE, a research project
 (ICT-317700) funded by the European Community under its Seventh
 Framework Program. The views expressed here are those of the
 author(s) only. The European Commission is not liable for any use
 that may be made of the information in this document.

8. Comments Solicited

 To be removed by RFC Editor: This draft is a part of the first steps
 towards an IETF BoF on Transport Services. Comments and questions
 are encouraged and very welcome. They can be addressed to the
 current mailing list <transport-services@ifi.uio.no> and/or to the
 authors.

9. References

9.1. Normative References

 [RFC0768] Postel, J., "User Datagram Protocol", STD 6, RFC 768,
 August 1980.

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7, RFC
 793, September 1981.

Hurtig, et al. Expires June 18, 2014 [Page 10]

Internet-Draft Transport APIs December 2013

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3208] Speakman, T., Crowcroft, J., Gemmell, J., Farinacci, D.,
 Lin, S., Leshchiner, D., Luby, M., Montgomery, T., Rizzo,
 L., Tweedly, A., Bhaskar, N., Edmonstone, R.,
 Sumanasekera, R., and L. Vicisano, "PGM Reliable Transport
 Protocol Specification", RFC 3208, December 2001.

 [RFC3649] Floyd, S., "HighSpeed TCP for Large Congestion Windows",
 RFC 3649, December 2003.

 [RFC3828] Larzon, L-A., Degermark, M., Pink, S., Jonsson, L-E., and
 G. Fairhurst, "The Lightweight User Datagram Protocol
 (UDP-Lite)", RFC 3828, July 2004.

 [RFC4340] Kohler, E., Handley, M., and S. Floyd, "Datagram
 Congestion Control Protocol (DCCP)", RFC 4340, March 2006.

 [RFC4960] Stewart, R., "Stream Control Transmission Protocol", RFC
 4960, September 2007.

 [RFC5681] Allman, M., Paxson, V., and E. Blanton, "TCP Congestion
 Control", RFC 5681, September 2009.

 [RFC6817] Shalunov, S., Hazel, G., Iyengar, J., and M. Kuehlewind,
 "Low Extra Delay Background Transport (LEDBAT)", RFC 6817,
 December 2012.

 [RFC6824] Ford, A., Raiciu, C., Handley, M., and O. Bonaventure,
 "TCP Extensions for Multipath Operation with Multiple
 Addresses", RFC 6824, January 2013.

 [RFC6897] Scharf, M. and A. Ford, "Multipath TCP (MPTCP) Application
 Interface Considerations", RFC 6897, March 2013.

9.2. Informative References

 [MINION] Iyengar, J., Cheshire, S., and J. Graessley, "Minion -
 Service Model and Conceptual API", draft-iyengar-minion-
 concept-02.txt (work in progress), October 2013.

 [QUIC] Roskind, J., "QUIC: Design Document and Specification
 Rational", April 2012, <https://bitly.com/Hm0DyX>.

 [SPDYID] Belshe, M. and R. Peon, "SPDY Protocol", draft-mbelshe-
 httpbis-spdy-00.txt (work in progress), February 2012.

Hurtig, et al. Expires June 18, 2014 [Page 11]

Internet-Draft Transport APIs December 2013

 [SPDYWP] Belshe, M., "SPDY: An Experimental Protocol for a Faster
 Web", April 2012,
 <http://www.chromium.org/spdy/spdy-whitepaper>.

 [WJG11] Welzl, M., Jorer, S., and S. Gjessing, "Towards a
 Protocol-Independent Internet Transport API", IEEE ICC
 2011., June 2011.

 [WNG11] Welzl, M., Niederbacher, F., and S. Gjessing, "Beneficial
 Transparent Deployment of SCTP: the Missing Pieces", IEEE
 GLOBECOM 2011, December 2011.

 [ZMQFAQ] Sustrik, M., "Frequently Asked Questions - zeromq", July
 2008, <http://zeromq.org/area:faq>.

 [ZMTP] Hintjens, P., Hurton, M., and I. Barber, "ZMTP - ZeroMQ
 Message Transport Protocol", June 2013,
 <http://rfc.zeromq.org/spec:23>.

Authors’ Addresses

 Per Hurtig (editor)
 Karlstad University
 Universitetsgatan 2
 Karlstad 651 88
 Sweden

 Phone: +46 54 700 23 35
 Email: per.hurtig@kau.se

 Stein Gjessing
 University of Oslo
 PO Box 1080 Blindern
 Oslo N-0316
 Norway

 Phone: +47 22 85 24 44
 Email: stein.gjessing@ifi.uio.no

Hurtig, et al. Expires June 18, 2014 [Page 12]

Internet-Draft Transport APIs December 2013

 Michael Welzl
 University of Oslo
 PO Box 1080 Blindern
 Oslo N-0316
 Norway

 Phone: +47 22 85 24 20
 Email: michawe@ifi.uio.no

 Martin Sustrik

 Phone: +421 908 714 885
 Email: sustrik@250bpm.com

Hurtig, et al. Expires June 18, 2014 [Page 13]

Transport Area T. Moncaster, Ed.
Internet-Draft J. Crowcroft
Intended status: Informational University of Cambridge
Expires: June 7, 2014 M. Welzl
 University of Oslo
 D. Ros
 Telecom Bretagne
 M. Tuexen
 Muenster Univ. of Appl. Sciences
 December 4, 2013

 Problem Statement: Why the IETF Needs Defined Transport Services
 draft-moncaster-tsvwg-transport-services-01

Abstract

 The IETF has defined a wide range of transport protocols over the
 past three decades. However, the majority of these have failed to
 find traction within the Internet. This has left developers with
 little choice but to use TCP and UDP for most applications. In many
 cases the developer isn’t interested in which transport protocol they
 should use. Rather they are interested in the set of services that
 the protocol provides to their application. TCP provides a very rich
 set of transport services, but offers no flexibility over which
 services can be used. By contrast, UDP provides a minimal set of
 services.

 As a consequence many developers have begun to write application-
 level transport protocols that operate on top of UDP and offer them
 some of the flexibility they are looking for. We believe that this
 highlights a real problem: applications would like to be able to
 specify the services they receive from the transport protocol, but
 currently transport protocols are not defined in this fashion. There
 is an additional problem relating to how to ensure new protocols are
 able to be adopted within the Internet, but that is beyond the scope
 of this problem statement.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

Moncaster, et al. Expires June 7, 2014 [Page 1]

Internet-Draft Transport Services December 2013

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on June 7, 2014.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 1.1. Changes in This Version (to be removed by RFC Editor) . . 3
 2. Transport Services . 3
 2.1. Identifying Transport Services 4
 2.2. Exposing Transport Services 4
 3. Why Now? . 5
 4. Security Considerations 6
 5. IANA Considerations . 6
 6. Conclusions . 6
 7. Contributors and Acknowledgements 7
 8. Comments Solicited . 7
 9. References . 7
 9.1. Normative References 7
 9.2. Informative References 8

1. Introduction

 The IETF has defined a wide array of transport protocols including
 UDP [RFC0768], TCP [RFC0793], SCTP [RFC4960], UDP-Lite [RFC3828],
 DCCP [RFC4340] and MPTCP [RFC6824]. In most cases new protocols have
 been defined because the IETF has established that there is a need
 for a set of behaviours than cannot be offered by any existing
 transport protocol.

Moncaster, et al. Expires June 7, 2014 [Page 2]

Internet-Draft Transport Services December 2013

 However, for an application programmer, using protocols other than
 TCP or UDP can be hard: not all protocols are available everywhere,
 hence a fall-back solution to TCP or UDP must be implemented. Some
 protocols provide the same services in different ways. Layering
 decisions must be made (e.g. should a protocol be used natively or
 over UDP?). Because of these complications, programmers often resort
 to either using TCP (even if there is a mismatch between the services
 provided by TCP and the services needed by the application) or
 implementing their own customised solution over UDP, and the
 opportunity of benefiting from other transport protocols is lost.
 Since all these protocols were developed to provide services that
 solve particular problems, the inability of applications to make use
 of them is in itself a problem. Implementing a new solution e.g.
 over UDP also means re-inventing the wheel (or, rather, re-
 implementing the code) for a number of general network functions such
 as methods to interoperate through NATs and PMTUD.

 We believe this mismatch between the application layer and transport
 layer can be addressed in a simple fashion. If an API allowed
 applications to request transport services without specifying the
 protocol, the transport system underneath could automatically try to
 make the best of its available resources. It could use available
 transport protocols in a way that is most beneficial for applications
 and without the application needing to worry about problems with
 middlebox traversal. Adopting this approach could give more freedom
 for diversification to designers of Operating Systems.

1.1. Changes in This Version (to be removed by RFC Editor)

 From draft-moncaster-tsvwg-transport-services-00 to -01: Editorial
 corrections and clarifications including:

 * Updated Section 2.1 to highlight that we will take a hybrid
 approach to identifying Transport Services, both top down (by
 examining existing APIs) and bottom up (by looking at existing
 transport protocols).

 * Updated Section 2.2 to commit to delivering at least one
 example API for this work.

 * Replaced Section 4. The new version makes it clear that we
 will preserve the status quo where the transport may or may not
 choose to implement security.

2. Transport Services

 The transport layer provides many services both to the end
 application (e.g. multiplexing, flow control, ordering, reliability)

Moncaster, et al. Expires June 7, 2014 [Page 3]

Internet-Draft Transport Services December 2013

 and to the network (e.g. congestion control). For the purposes of
 this document we define Transport Services as follows:

 o A Transport Service is any service provided by the transport layer
 that can only be correctly implemented with information from the
 application.

 The key word here is "information" -- many existing transport
 protocols function perfectly adequately because the choice of
 protocol implicitly includes information about the desired transport
 capabilities. For instance the choice of TCP implies a desire for
 reliable, in-order data delivery. However we think that such
 implicit information is not always sufficient. The rest of this
 section explains how we propose to identify Transport Services and
 how those services might then be exposed to the application.

2.1. Identifying Transport Services

 One of the key aspects of this work is how to identify which
 Transport Services should actually be supported. We are taking a
 two-pronged approach. Rather than trying to identify every possible
 service that popular applications might need, we will survey a given
 set of common APIs that applications use to communicate across the
 network. We will complement this with a bottom-up approach where we
 establish the set of services that have already been published in
 RFCs coming from the Transport Area. This way, much of the
 discussion about the need to specify these services has already taken
 place, and it is unnecessary to re-visit those discussions. It is
 our hope that this approach will lead to identifying a set of service
 primitives that can be combined to offer a rich set of services to
 the application.

2.2. Exposing Transport Services

 These Transport Services would be exposed to the application via an
 API. The definition of such an API and the functionality underneath
 the API are beyond the scope of this problem statement. We briefly
 describe three possible approaches below.

 One approach could be to develop a transport system that fully
 operates inside the Operating System. This transport system would
 provide all the defined services for which it can use TCP as a fall-
 back at the expense of efficiency (e.g., TCP’s reliable in-order
 delivery is a special case of reliable unordered delivery, but it may
 be less efficient). To test whether a particular transport is
 available it could take the Happy Eyeballs
 [I-D.wing-tsvwg-happy-eyeballs-sctp] approach proposed for SCTP -- if
 the SCTP response arrives too late then the connection just uses TCP

Moncaster, et al. Expires June 7, 2014 [Page 4]

Internet-Draft Transport Services December 2013

 and the SCTP association information could be cached so that a future
 connection request to the same destination IP address can
 automatically use it.

 Polyversal TCP [PVTCP] offers another possible approach. This starts
 by opening a TCP connection and then attempts to establish other
 paths using different transports. The TCP connection ensures there’s
 always a stable fallback. Having established the initial connection,
 PVTCP can then use service requests coming through setsockopt() to
 select the most appropriate transport from the available set.

 Another approach could be to always rely on UDP only, and develop a
 whole new transport protocol above UDP which provides all the
 services, using a single UDP port. Instead of falling back to TCP,
 this transport system could return an error in case there is no other
 instance of the transport system available on the other side; the
 first packets could be used to signal which service is being
 requested to the other side (e.g., unordered delivery requires the
 receiving end to be aware of it).

3. Why Now?

 So why do we need to deal with this issue now? There are several
 answers. Firstly, after several decades of dominance by various
 flavours of TCP and UDP (plus limited deployment of SCTP [RFC4960]),
 transport protocols are undergoing significant changes. Recent
 standards allow for parallel usage of multiple paths (MPTCP [RFC6824]
 and CMT-SCTP [I-D.tuexen-tsvwg-sctp-multipath]) while other standards
 allow for scavenger-type traffic (LEDBAT [RFC6817]). What sets these
 apart from e.g. DCCP [RFC4340] is that they have already seen
 deployment in the wild -- one of the Internet’s most popular
 applications, BitTorrent, uses LEDBAT and MPTCP is already seeing
 deployment in major operating systems [Bonaventure-Blog]. Meanwhile
 there is a trend towards tunnelling transports inside UDP -- SCTP
 over DTLS over UDP is now being shipped with a popular browser in
 order to support WebRTC [RFC6951][I-D.ietf-tsvwg-sctp-dtls-encaps]
 while RTMFP [I-D.thornburgh-adobe-rtmfp] and QUIC [QUIC] are recent
 examples of transport protocols that are implemented over UDP in user
 space. In a similar vane, Minion [I-D.iyengar-minion-protocol] is a
 proposal to realise some SCTP-like services with a downwards-
 compatible extension to TCP.

 All of a sudden, application developers are faced with a
 heterogeneous, complex set of protocols to choose from. Every
 protocol has its pro’s and con’s, but often the reasons for making a
 particular choice depend not on the application’s preferences but on
 the environment (e.g., the choice of Minion vs. SCTP would depend on
 whether SCTP could successfully be used on a given network path).

Moncaster, et al. Expires June 7, 2014 [Page 5]

Internet-Draft Transport Services December 2013

 Choosing a protocol that isn’t guaranteed to work requires
 implementing a fall-back method to e.g. TCP, and making the best
 possible choice at all times may require sophisticated network
 measurement techniques. The process could be improved by using a
 cache to learn which protocols previously worked on a path, but this
 wouldn’t always work in a cloud environment where virtual machines
 can and do migrate between physical nodes.

 We therefore argue that it is necessary to provide mechanisms that
 automate the choice and usage of the transport protocol underneath
 the API that is exposed to applications. As a first step towards
 such automation, we need to define the services that the transport
 layer should expose to an application (as opposed to today’s typical
 choice of TCP and UDP).

4. Security Considerations

 Whether or not to enable TLS[RFC5246] is currently left up to
 individual protocol implementations to decide. While there is some
 debate about whether this is correct we have chosen to keep the
 status quo.

5. IANA Considerations

 This document makes no request to IANA although in future an IANA
 register of Transport Services may be required.

6. Conclusions

 After decades of relative stagnation the last few years have seen
 many new transport protocols being developed and adopted in the wild.
 This evolution has been driven by the changing needs of application
 developers and has been enabled by moving transport services into the
 application or by tunnelling over an underlying UDP connection.

 Application developers are now faced with a genuine choice of
 different protocols with no clear mechanism for choosing between
 them. At the same time, the still-limited deployment of some
 protocols means that the developer must always provide a fall-back to
 an alternative transport if they want to guarantee the connection
 will work. This is not a sustainable state of affairs and we believe
 that in future a new transport API will be needed that provides the
 mechanisms to facilitate the choice of transport protocol. The first
 step towards this is to identify the set of Transport Services that a
 transport protocol is able to expose to the application. We propose
 doing this in a bottom-up fashion, starting from the list of services
 available in transport protocols that are specified in RFCs.

Moncaster, et al. Expires June 7, 2014 [Page 6]

Internet-Draft Transport Services December 2013

7. Contributors and Acknowledgements

 Many thanks to the many people that have contributed to this effort
 so far including Arjuna Sathiaseelan, Jon Crowcroft, Marwan Fayed and
 Bernd Reuther among many others.

 D. Ros and M. Welzl were part-funded by the European Community under
 its Seventh Framework Programme through the Reducing Internet
 Transport Latency (RITE) project (ICT-317700). T. Moncaster and J.
 Crowcroft are part-funded by the European Union’s Seventh Framework
 Programme FP7/2007-2013 under the Trilogy 2 project, grant agreement
 no. 317756.

8. Comments Solicited

 To be removed by RFC Editor: This draft is the first step towards an
 IETF BoF on Transport Services. Comments and questions are
 encouraged and very welcome. They can be addressed to the current
 mailing list <transport-services@ifi.uio.no> and/or to the authors.
 We also have a website at <https://sites.google.com/site/
 transportprotocolservices/>

9. References

9.1. Normative References

 [RFC0768] Postel, J., "User Datagram Protocol", STD 6, RFC 768,
 August 1980.

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7, RFC
 793, September 1981.

 [RFC3550] Schulzrinne, H., Casner, S., Frederick, R., and V.
 Jacobson, "RTP: A Transport Protocol for Real-Time
 Applications", STD 64, RFC 3550, July 2003.

 [RFC3828] Larzon, L-A., Degermark, M., Pink, S., Jonsson, L-E., and
 G. Fairhurst, "The Lightweight User Datagram Protocol
 (UDP-Lite)", RFC 3828, July 2004.

 [RFC4340] Kohler, E., Handley, M., and S. Floyd, "Datagram
 Congestion Control Protocol (DCCP)", RFC 4340, March 2006.

 [RFC4960] Stewart, R., "Stream Control Transmission Protocol", RFC
 4960, September 2007.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

Moncaster, et al. Expires June 7, 2014 [Page 7]

Internet-Draft Transport Services December 2013

 [RFC6817] Shalunov, S., Hazel, G., Iyengar, J., and M. Kuehlewind,
 "Low Extra Delay Background Transport (LEDBAT)", RFC 6817,
 December 2012.

 [RFC6824] Ford, A., Raiciu, C., Handley, M., and O. Bonaventure,
 "TCP Extensions for Multipath Operation with Multiple
 Addresses", RFC 6824, January 2013.

 [RFC6951] Tuexen, M. and R. Stewart, "UDP Encapsulation of Stream
 Control Transmission Protocol (SCTP) Packets for End-Host
 to End-Host Communication", RFC 6951, May 2013.

9.2. Informative References

 [Bonaventure-Blog]
 Bonaventure, O., "Blog Entry: MPTCP used in iOS 7",
 September 2013.

 [I-D.dreibholz-tsvwg-sctpsocket-multipath]
 Dreibholz, T., Becke, M., and H. Adhari, "SCTP Socket API
 Extensions for Concurrent Multipath Transfer", draft-
 dreibholz-tsvwg-sctpsocket-multipath-06 (work in
 progress), July 2013.

 [I-D.ietf-tsvwg-sctp-dtls-encaps]
 Tuexen, M., Stewart, R., Jesup, R., and S. Loreto, "DTLS
 Encapsulation of SCTP Packets", draft-ietf-tsvwg-sctp-
 dtls-encaps-02 (work in progress), October 2013.

 [I-D.iyengar-minion-protocol]
 Jana, J., Cheshire, S., and J. Graessley, "Minion - Wire
 Protocol", draft-iyengar-minion-protocol-02 (work in
 progress), October 2013.

 [I-D.thornburgh-adobe-rtmfp]
 Thornburgh, M., "Adobe’s Secure Real-Time Media Flow
 Protocol", draft-thornburgh-adobe-rtmfp-10 (work in
 progress), July 2013.

 [I-D.tuexen-tsvwg-sctp-multipath]
 Amer, P., Becke, M., Dreibholz, T., Ekiz, N., Jana, J.,
 Natarajan, P., Stewart, R., and M. Tuexen, "Load Sharing
 for the Stream Control Transmission Protocol (SCTP)",
 draft-tuexen-tsvwg-sctp-multipath-07 (work in progress),
 October 2013.

 [I-D.wing-tsvwg-happy-eyeballs-sctp]

Moncaster, et al. Expires June 7, 2014 [Page 8]

Internet-Draft Transport Services December 2013

 Wing, D. and P. Natarajan, "Happy Eyeballs: Trending
 Towards Success with SCTP", draft-wing-tsvwg-happy-
 eyeballs-sctp-02 (work in progress), October 2010.

 [PVTCP] Nabi, Z., Moncaster, T., Madhavapeddy, A., Hand, S., and
 J. Crowcroft, "Evolving TCP: how hard can it be?",
 Proceedings of ACM CoNEXT 2012, December 2012.

 [QUIC] Roskind, J., "Quick UDP Internet Connections", June 2013.

Authors’ Addresses

 Toby Moncaster (editor)
 University of Cambridge
 Computer Laboratory
 J.J. Thomson Avenue
 Cambridge CB3 0FD
 UK

 Phone: +44 1223 763654
 EMail: toby.moncaster@cl.cam.ac.uk

 Jon Crowcroft
 University of Cambridge
 Computer Laboratory
 J.J. Thomson Avenue
 Cambridge CB3 0FD
 UK

 Phone: +44 1223 763633
 EMail: jon.crowcroft@cl.cam.ac.uk

 Michael Welzl
 University of Oslo
 PO Box 1080 Blindern
 Oslo N-0316
 Norway

 Phone: +47 22 85 24 20
 EMail: michawe@ifi.uio.no

Moncaster, et al. Expires June 7, 2014 [Page 9]

Internet-Draft Transport Services December 2013

 David Ros
 Telecom Bretagne
 Rue de la Chataigneraie, CS 17607
 35576 Cesson Sevigne cedex
 France

 Phone: +33 2 99 12 70 46
 EMail: david.ros@telecom-bretagne.eu

 Michael Tuexen
 Muenster University of Applied Sciences
 Stegerwaldstrasse 39
 Steinfurt 48565
 DE

 EMail: tuexen@fh-muenster.de

Moncaster, et al. Expires June 7, 2014 [Page 10]

	draft-hurtig-tsvwg-transport-apis-00
	draft-moncaster-tsvwg-transport-services-01

