IPv6 mapping to non-IP protocols draft-rizzo-6lo-6legacy-00

Gianluca Rizzo, HES SO Valais

There is no standard for assigning IPv6 addresses to legacy technologies

- Many devices cannot be addressed (directly) via IP
 - E.G.: Some building automation technologies, RFID, etc.
 - Use of gateways which breaks the end-to-end principle of IoT
 - Loss of transparency
- To address them directly, a mechanism for providing an IPv6 address is required
 - Accessible via a proxy which operates the translation bw IPv6 and legacy protocol
- There is no standard way of assigning such address

Issues addressed with the proposed mapping

- Legacy Protocol Identification
 - E.g. proxies for two or more legacy networks
- Inter-Protocol Aliasing
 - Diff. technologies, same interface identifier
- Conflicts with EUI-64 mapped addresses
- Intra-Protocol Aliasing
 - For legacy technologies with small addressing space

Other requirements for the mapping

- Consistency: A host should get the same IPv6 address every time it connects from a same legacy network
 - (assuming that the configuration of all the other devices in that network remains un changed)
- Local Uniqueness: the host part of the IPv6
 address should be unique for all devices with
 the same network part.
- Uniqueness within the whole Internet

The proposed mapping: Format of the host part

_								_
Ì	Tech.	U/L	I/G	Reserved	Tech.	EUI-64	Tech.	i
	ID	"0"	"0"		Mapping	"0x0000"	Mapping	l
	(6 bits)	(1 bit)	(1 bit)	(8 bits)	MSB (8 bits)	(16 bits)	LSBs (24 bits)	l
4								÷

- A Technology ID Code for identification of the legacy protocol
- U/L bit: to 0 to avoid conflicts with EUI-64 mapped addresses
- I/G bit: to 0 (unused)
- A Reserved field: could be used in the future for the identification of different interfaces for a same technology (in the same subnetwork), avoiding intra protocol aliasing
- Tech. mapping: direct mapping (hashing) of the interface identifier
- EUI-64 field: to "0x0000" to avoid conflicts with EUI-64 interface identifiers

Example- RFID

- EPC: 01.23F3D00.8666A3.000000A05
- Tech Id: 1
- We apply a hash (CRC-32) to the EIC, getting 0xA93AFFA0
- The resulting host part is

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Tech. ID (6 bits) 0x04	U/L "0" (1 bit) 0	I/G "0" (1 bit) 0	Reserved (8 bits) 0x00	Mapping MSB (8 bits) 0xA9	"0x0000"	Mapping LSBs (24 bits) 0x3AFFA0
---------------------------------------	--	---------------------------------	----------------------------	----------------------------	------------------------------	------------------------------------	----------	---

Questions? Gianluca. Rizzo @hevs.ch