Charter Update

Where We Are

* Base ALTO protocol finally done

* Extensions have been proposed for the last
two years (and postponed till now)
— Protocol optimizations

— New usages / use cases

e Extensive discussion since IETF88
— |dentified four tentative new items
— (Reasonably) achievable in a short time

At a Glance

Protocol optimizations
» draft-roome-alto-incr-updates
» draft-marocco-alto-ws
» draft-alto-caching-subscription

Server discovery extensions
» draft-kiesel-alto-ip-based-srv-disc
» draft-kist-alto-3pdisc
» draft-kiesel-alto-3pdisc-impl

Endpoint property and e2e cost extensions
» draft-roome-alto-pid-properties
» draft-seedorf-cdni-fci-alto
» draft-scharf-alto-vpn-service
» draft-seedorf-Imap-alto
» draft-wu-alto-te-metrics
» draft-randriamasy-alto-cost-schedule
» draft-randiamasy-alto-multi-cost

Graph representation extensions

» draft-bernstein-alto-topo
» draft-yang-alto-topology

Protocol Optimizations

Protocol extensions for reducing the
volume of on-the-wire data exchange
required to align the ALTO server and
clients.

Extensions under consideration are
mechanisms for delivering server-initiated
notifications and partial updates of maps.

Efforts developed in other working groups
such as Websockets and JSON-patch will be
considered, as well as bespoke mechanisms
specific to the ALTO protocol.

Server Discovery Extensions

Extensions to the base ALTO server

discovery mechanism (RFC-to-be) for
deployment 1in heterogeneous network
environments.

Mechanisms under consideration are
extensions for third-party and
anycast-based server discovery.

Endpoint Property and e2e Cost
Extensions

Protocol extensions to convey a richer set of
attributes to allow applications to determine not
only "where" to connect but also "when" to connect.

Such additional information will be related both to
endpoints (e.g. conveying server load and cache geo-
location information for CDN use cases) and to
endpoint-to-endpoint costs (e.g. bandwidth
calendaring to represent time-averaged cost values
in datacenter networks).

The working group will specify such extension in
coordination with other working groups that are also
working on the related use cases (e.g. cdni, 1i2rs,
lmap) .

Graph Representation Extensions

A survey of techniques to formalize the
structure of a network graph (that can
derived from a set of related ALTO
network and cost maps) in a format that
would facilitate advanced graph
computation.

Such survey will cover both models used
in popular open-source software (e.q.
NetworkX, tinkerpop blueprints) and
models being considered in other
working groups (e.g. netmod, 1i2rs).

WebSocket-based server-to-client
notifications for the Application-Layer
Traffic Optimization (ALTO) Protocol

draft-marocco-alto-ws-02

Enrico Marocco, Jan Seedorf

Example

"resources" : |
{
"uri"™ : "http://alto.example.com/networkmap”,
"media-types" : ["application/alto-networkmap+j=zon"],
"updates" : "ws://alto.example.com/networkmap”
:'r {
"uri"™ : "http://alto.example.com/costmap/num/routingcost™,
"media-types" : ["application/alto-costmap+ison”],
"capabilities"™ : {
"cost—modes" : ["numerical™],
"cost-types" : ["routingcost"]
Ir
"updates" : "ws://alto.example.com/costmap/num/routingcost”

Information Resource Directory returned by an ALTO Server

* |RD contains the WebSocket URI of the update notification service
associated to the specific resource

* ALTO Server provides both a network map and a cost map with
corresponding update notification services

Incremental Updates
Wendy Roome & Nico Schwan

Our suggestion: Client polls at interval suggested by server. Use standard HTTP
requests, so no additional client libraries are required.

ALTO Server assigns tags to Cost Map versions, just like Network Map tags. When a
Cost Map changes, its tag must change. For Incremental Update Service, the client
sends the tag of a previous Cost Map, and the server responds with all changes
since that version.

We suggest using existing Cost Map message for incremental updates. Just re-
interpret the semantics as: “replace existing src-dest costs with these, and leave
the other costs as is.” To delete a cost, the server sets cost to -1 or null.

JSON Patch vs. ALTO Cost Map Response

JSON Patch is less efficient. To update costs from pid1 to pid2 & pid3, and delete
the cost to pid4, JSON Patch requires:

{"replace": "cost-map.pidl.pid2", "value": 123,
"replace": "cost-map.pidl.pid3", "value": 42,
"delete": "cost-map.pidl.pid4"}

while an ALTO Cost Map response is just:
{"pidl": {"pid2": 123, "pid3": 42, "pid4": null}}

Incremental Update clients want fast access to large maps. Those clients will not
store a map as a JSON object defined by a JSON library. Those clients will extract
the cost-points from JSON, and save them in a sparse matrix or hash table. So

clients cannot rely on a JSON library to automatically apply JSON Patch updates.

Similarly, servers will not store cost data as JSON objects; they will use a more
compact format, and create JSON as needed. So servers cannot rely on a JSON
library to automatically create a JSON patch by diff'ing two JSON objects.

JSON is an interchange format, not a storage format.

Extensions to ALTO Server Discovery:
IP Anycast based ALTO Server Discovery

draft-kiesel-alto-ip-based-srv-disc-02

Third-party ALTO Server Discovery

draft-kist-alto-3pdisc-05

|ETF 89, ALTO session, London, 2014-03-06
Sebastian Kiesel

Martin Stiemerling
Reinaldo Penno

ALTO Server Discovery

* draft-ietf-alto-server-discovery-10
— DHCP + manual config. In the RFC editor queue!

— Useful but with certain limitations
 DHCP is widely deployed, but not everywhere
e Writing a portable application using DHCP opts. is not trivial (API)
* Issues with middleboxes (forwarding DHCP opts WAN — LAN)

* New:draft-kiesel-alto-ip-based-srv-disc
— Send queries for an IRD to a special anycast address

— Network operator will setup routing tables to ensure that
query is directed to an appropriate ALTO server
(ALTO is quite much related to routing (costs), so routing
folks will have the ALTO server on their radar anyway)

Third-party ALTO Server Discovery

* Conceptually, the ALTO protocol allows to deliver a “full” NxN
network/cost map to ALTO clients. However, the information
sources (e.g., ISPs) may not have this global knowledge

— Several ALTO servers, each with partial knowledge, in the network
* If knowledge is partitioned, client needs to find the “right” server
e Alternatives that were considered and abandoned:

* New: draft-kist-alto-3pdisc - T

Data replication between ALTO servers -
Request routing between ALTO servers

LN Internet

1. .,' 2 \‘ *.. ~— — _backbones

ALTO client finds “right” ALTO
server by means of DNS lookups

IP address — ALTO IRD URI

Allows gradual deployment
without central coordination

Fulfills RFC 6708, AR-33

PID Properties
Wendy Roome & Richard Yang

Presumably the endpoints in a PID have something in common, so why not extend
the Endpoint Property concept to PIDs?

Example PID properties:

Geo: Continent code, country code, state code, lat/long bounding box, ...
Network: ISP codes, ASNs, ...
Endpoint type: server farm, residential customers, mobile devices, ...

If PID2 is a subset of PID1, then PID2 inherits properties of PID1, unless overridden.
The PID Property extension will define rules for such inheritance.

PID Properties and Endpoint Property Service share the same set of property
definitions. EPS may return properties for the endpoint’s PID, if not overridden.

As with Full & Filtered Cost Maps, the extension defines a GET-mode Full PID
Property service that returns properties for all PIDs, and a POST-mode Filtered PID
Property service that returns selected properties for selected PIDs. An ALTO server

can choose to provide one or both.

Example: Filtered PID Property Service

The “country” and “state” properties are blank-separated lists of codes (a PID can

span political borders). PID1a & PID1b are subsets of PID1, and inherit the “country”
property from PID1.

Request (POST-mode):

{ "properties": ["country", "state"],
"pids": ["PID1", "PIDla", "PID1b"] }

Response:

{ "meta": {
"dependent-vtags":

{ "resource-id": "my-network-map", "tag": "314159265359" }
}

"pid-properties": {
"PID1": { "country": "USA" },
"PIDla": { "country": "USA", "state": "NY" },
"PID1b": { "country": "USA", "state": "NJ PA" }

ALTO PID Property Extension is needed

for an ALTO-based CDNI FCI Solution
(draft-seedorf-cdni-request-routing-alto-06)

Jan Seedorf, Richard Yang

Example ALTO PID Properties for CDNI FCI “Footprints”

HTTP/1.1 200 OK
Content-Length: TBA
Content-Type: application/alto-pidprop+json

{

"meta" : {

dependent-vtags : | . PID properties would allow to assign the same
{"resource-id": "my-eu-netmap",

"tag": "1266506139" capabilities to all endpoints in a given CDNI footprint

} (footprint=ALTO PID defined in an ALTO network map)
]

7
"properties": {
”pid:south-france” : { “delivery-protocol": ["HTTP”], ... },
"pid:germany” : { “delivery-protocol": ["HTTP”, “HTTPS"], ... },
“pid:rest” : {}
}
}

PID Property concept allows clean separation between footprint & capabilities:
* PID gives name to a footprint

e Can then easily change separately either
O Capabilities (=PID properties) for a given footprint
O Composition of the footprint itself

o

Alternative Service (CDNI)

« CDNs have always been a major use case for ALTO.

- Footprint sharing and request routing.

- Progress on getting ALTO incorporated in CDNI has been difficult.

« Asynchronous updates
» Regions instead of strict prefix topology
« Capabilities

- We could try to twist the ALTO network map services into something
suitable for CDNI.

* But why not just make a new ALTO information service?
* Proposal: new information service for CDNI FCI.

- Based on a new CDNI object format (pending)
- In the future consider other new services as well

VPN Service PID Properties (M. Scharf)

HTTP/1.1 200 OK

Network map

Content-Type: application/alto-
networkmap+json

{ "meta" : { ..},
"network-map" : {
"PIDII"™ : {
"id" : ["SITE-SANFRANCISCO"]
s
"PIDI14"™ : |
"id" : ["SITE-CHICAGO"]
s
"PID21" : {
"id" : ["SITE-OTTAWA"]
s
"PID27" : {
"id"™ : ["SITE-PARIS"]

}

Topology example taken from
draft-scharf-alto-vpn-service-02

HTTP/1.1 200 OK

PID properties

Eontent—Type: application/alto-pidprop+json
{

"meta" : { .. },
"properties": {

"pid:PID11" : {
"type": "L3VPN site",
"location": ["37.75 N, 122.28 wW"],
"oper status": "up", ..

Yy

"pid:PID14" : {
"type": "L3VPN site",
"location": ["41.85 N, 87.65 W"],
"oper status": "down", ..

Yy

"pid:PID21" : {
"type": "L3VPN site",
"location": ["45.24 N, 75.43 wW" 7,
"oper status": "up", ..

by

"pid:PID27" : {
"type": "L3VPN site",
"location": ["48.86 N, 2.35 E"],
"oper status": "up", ..

}
}
}

« ALTO benefit: Get topology even w/o connectivity (e.g., before scale-out)

« Important ALTO extensions: General PID properties, non-IP PID identifiers

 Further requirements: Query for properties, and other requirements in

draft-scharf-alto-vpn-service-02

ALTO Traffic Engineering Cost
Metrics

draft-wu-alto-te-metrics-01
Qin Wu(bill.wu@huawei.com)
Y. Richard Yang (yry@cs.yale.edu)
Young Lee(leeyoung@huawei.com)
Dhruv Dhody(dhruv.ietf@gmail.com)
Sabine Randriamasy (sabine.randriamasy@alcatel-lucent.com)

ALTO IETF 89 London

JSON format example
request on ‘routingcost’ metric with constraint on ‘latency’

POST /endpointcost/lookup HTTP/1.1 . HTTP/1.1 200 OK
Host: alto.example.com . Content-Length: TBA
Content-Length: TBA . Content-Type: application/alto-endpointcost+json
Content-Type: application/alto-endpointcostparams+json . {
Accept: application/alto-endpointcost+json,application/alto-error+json . "meta" i
{ . "cost-type": {"cost-mode" : "numerical",
"cost-type": {"cost-mode" : "numerical", . "cost-metric" : “routingcost”
"cost-metric" : “routingcost"}, . "constraints" : {"delay "},
"constraints" : {"delay Is 15"}, . }
"endpoints" : { .)
"srcs": ["ipv4:192.0.2.2"], . "endpoint-cost-map" : {
"dsts": [. "ipv4:192.0.2.2": {
"ipv4:192.0.2.89", . "ipv4:192.0.2.89" : 10, ["delay eq 0"],
"ipv4:198.51.100.34", . "ipv4:198.51.100.34" : 20, ["delay eq 2"],
"ipv4:203.0.113.45" . "ipv4:203.0.113.45" : 30, ["delay eq 3"],
] . }
} . }

} . }

JSON format example
request on ‘Bandwidth Calendaring ‘

e POST /endpointcost/lookup HTTP/1.1

GET /directory HTTP/1.1 * Host: alto.example.com

* Content-Length: TBA

e Content-Type: application/alto-endpointcostparams+json

e Accept: application/alto-endpointcost+json,application/alto-error+json

Host: alto.example.com
Accept: application/alto-directory+json,application/alto-error+json

e |
HTTP/1.1 200 OK » "cost-type": {"cost-mode" : “calendaring",
Content-Length: 2333 . "cost-metric" : “Availbandwidth"},

e "endpoints" : {

Content-Type: application/alto-directory+json
e srcs":['"ipv4:192.0.2.2"],

. "dsts": [
{ « "ipv4:192.0.2.89",
"meta" : { . "ipv4:198.51.100.34",
"cost-types": { . "ipv4:203.0.113.45"
"calendaring-bw": { ©
n n LN H n * }
cost-mode" : "calendaring", .}
cost—rtnefrlc : /-.\vallbandW|dth , . . HTTP/1.1 200 OK
description": {"interval":mm/hh,"duration":mm/hh/dd/mm, . Content-Length: TBA
start”:mm/hh/dd/mm} . Content-Type: application/alto-endpointcost+json
2 . {
. "meta" :{
resource.s H . "cost-type": {"cost-mode" : “calendaring",
endpoint-cost” : { . "cost-metric" : “Availbandwidth"
"uri" : "http://alto.example.com/endpointcost/lookup", . }
"media-type" : "application/alto-endpointcost+json", . }
"accepts" : "application/alto-endpointcostparams+json", . "'endpoint-cost-map" {
"capabilities” : { . "ipv4:192.0.2.2": {
cost-constraints” : true, _ . "ipv4:192.0.2.89" :[6,5,7,8,4,10,7,6],
"cost-type-names” : ["calendaring-bw"] . "ipv4:198.51.100.34" : [7,4,6,8,5,9,6,7]
} . "ipv4:203.0.113.45" :[7,6,8,5,7,9,6,8],
" }
. }

ALTO Graph Representation Extension for ALTO
M. Scharf, G. Bernstein, Y. Lee, R. Yang

Motivating Example (Revealing path coupling):

* Current ALTO maps do not convey coupling among E2E paths: e.g., bw(A—>B) =1 &&
bw(C -> D) but bw(A->B, C->D) # 2, if there is a shared bottleneck.

* Such information can be helpful for application scheduling, reliability analysis.
* Graph representation allows disclosure of such information.
Basic Graph Representation Schemes:

* Path-vector: Allows flexible network policy routing, but at the price of large
representation overhead (e.g., enumeration of E2E paths among N nodes has complexity

N*N*M, where M is average path length)

* Node-edge: Compact representation (e.g., only N * K links, where K is avg node degree),
but network routing policy may not be conveyed.

Proposal:

» Simple extensions generalizing ALTO nw/cost maps to provide both path-vector and
node-edge representations.

* Abstract graph for a given client (usually not a NMS); not full RIB data.

* Maintains ALTO privacy enforcement by operator.

{
"nodes": [
llnoll : {
2
llnlll : {
2
1,
"edges": [
{"src": “node Q.
"dst": “node:n1",
"type": "directed",
"cost" : [{
"cost-metric" : "delay",
Ilvaluell : II3II
LA
"cost-metric" : "availbw",
"Value" : II50II
LA
"cost-metric" : "risk-group",
"value" : ["SLRG3“]
1
2
]
}

Graph Model

J
~ Abstract network

nodes in graph

GET /costmap/pathvec HTTP/1.1

Host: alto.example.com

Accept: application/alto-costmap
+json,application/alto-error+json

\

Abstract network
edges in graph

A\ Node/edge
properties, such as
multiple TE metrics
from draft-wu-alto-
te-metrics

Node-edge

Vector of network
nodes traversed.

HTTP/1.1 200 OK
Content-Length: TBA
Content-Type: application/alto-costmap+json

{

"meta" : {

"cost-type" : {"cost-mode" :”path-vector”}
}I
"cost-map" : {
"PID1": {"PID1": [],
IIPIDZII: [llnoll' Ilnlll]
"PID3": [“n0"]},
"PID2":{...},
"PID3":{..

}

Z

Path-vector Cost Map

