draft-nir-cfrg-chacha20-poly1305-01

ChaCha20 and Poly1305 for IETF protocols

Yoav Nir CFRG IETF 89

What is this draft?

- * A description of the ChaCha20 stream cipher, the Poly1305 authenticator, and Adam's AEAD combination of them both.
- * Enough details and test vectors for a competent coder to make a correct implementation
- * Security considerations to allow a good coder to avoid pitfalls in implementations, such as side-channels.
- * A stable reference for IETF protocols
 - * Such as ESP and TLS.

What this draft is not

- * We don't define the algorithms
 - * Suggestions and criticiques are welcome, but should really be taken up with DJB in other venues.
- * The draft does not contain any security proofs, although we might want to reference some.
- * The draft doesn't contain specific instructions on how to avoid timing attacks on Poly1305, or whether that is even a concern.
- * We don't explain the reasoning behind the design.

Changes from regular ChaCha

- * The nonce: block sequence number split was changed from 64:64 to 96:32
 - Existing AEAD constructions have 96-bit nonces
 - * 2^32 64-byte blocks should be enough (256 GB)
 - * For an ESP packet or a TLS record. Tarball?
- * Adam's AEAD construction:
 - * Encrypt
 - One-time MAC key by running ChaCha20 on a nonce
 - * Poly1305 (AAD | | AADlen | | ciphertext | | ciphertext_len)

Design decisions

- * Lengths, and conversion from external to internal representation is littleendian, unlike the "network order" that was common in earlier specs
- Bit instead of byte count in lengths
- * The 96:32 split for nonce:counter
- Poly1305 one-time key generation using Chacha20
- Use only the 20-round 256-bit key variation of ChaCha
 - * 8- and 12- round variations exist, as well as 128-bit key
 - Performance for 256-bit and 128-bit is the same
 - But reduced rounds would be faster

What's missing

- More test vectors at every stage
 - Need someone else to check the test vectors
 - * Othewise we're setting the implementers up for failure.
- * Can probably get an undergrad to do it next year.
- * Better discussion of the security considerations
- * References to security proofs
- * More?

Questions?
Comments?
Volunteer to review?
Volunteer to provide references?
Volunteer to check the test vectors?