draft-nir-cfrg-chacha20-poly1305-01 # ChaCha20 and Poly1305 for IETF protocols Yoav Nir CFRG IETF 89 #### What is this draft? - * A description of the ChaCha20 stream cipher, the Poly1305 authenticator, and Adam's AEAD combination of them both. - * Enough details and test vectors for a competent coder to make a correct implementation - * Security considerations to allow a good coder to avoid pitfalls in implementations, such as side-channels. - * A stable reference for IETF protocols - * Such as ESP and TLS. #### What this draft is not - * We don't define the algorithms - * Suggestions and criticiques are welcome, but should really be taken up with DJB in other venues. - * The draft does not contain any security proofs, although we might want to reference some. - * The draft doesn't contain specific instructions on how to avoid timing attacks on Poly1305, or whether that is even a concern. - * We don't explain the reasoning behind the design. ## Changes from regular ChaCha - * The nonce: block sequence number split was changed from 64:64 to 96:32 - Existing AEAD constructions have 96-bit nonces - * 2^32 64-byte blocks should be enough (256 GB) - * For an ESP packet or a TLS record. Tarball? - * Adam's AEAD construction: - * Encrypt - One-time MAC key by running ChaCha20 on a nonce - * Poly1305 (AAD | | AADlen | | ciphertext | | ciphertext_len) ## Design decisions - * Lengths, and conversion from external to internal representation is littleendian, unlike the "network order" that was common in earlier specs - Bit instead of byte count in lengths - * The 96:32 split for nonce:counter - Poly1305 one-time key generation using Chacha20 - Use only the 20-round 256-bit key variation of ChaCha - * 8- and 12- round variations exist, as well as 128-bit key - Performance for 256-bit and 128-bit is the same - But reduced rounds would be faster ## What's missing - More test vectors at every stage - Need someone else to check the test vectors - * Othewise we're setting the implementers up for failure. - * Can probably get an undergrad to do it next year. - * Better discussion of the security considerations - * References to security proofs - * More? Questions? Comments? Volunteer to review? Volunteer to provide references? Volunteer to check the test vectors?