

DTLS-based Multicast Security for Low-Power and Lossy Networks (LLNs)

draft-keoh-dice-multicast-security

<u>Sandeep S. Kumar,</u> Sye Loong Keoh, Oscar Garcia-Morchon, Esko Dijk, Akbar Rahman

IETF89 March 3, 2014, London Email: sandeep.kumar AT philips.com

Lighting control

Lighting control

Visually synchronous change

Sensor

Corridor

Lighting control

- Visually synchronous change
- Multicast groups -> CoAP group communication

Requirement

Security for CoAP group communication messages across multiple LowPANs/PHY-networks

- Same security level as within a single LowPAN
- Groups of <100 nodes
- Group level Confidentiality, Integrity, Replay protection
- Reuse existing protocols on constrained devices
 - DTLS chosen for CoAP unicast communication

Proposed solution

- Use DTLS record layer to also protect CoAP group communication messages (in addition to CoAP unicast)
- Out-of-band setup of Groups Security Association (GSA) for group members
- Support multiple senders in the group
 - Adapt DTLS record layer to avoid reuse of nonce for AEAD cipher suites

DTLS record layer adaptation

- Each sender gets a unique SenderID (1-byte) from the group controller
- In the DTLS Record Layer, split the 6-byte sequence number field into:
 - 1 byte Sender ID and 5 bytes "truncated" sequence number.

DTLS record layer processing

Senders

- "write state" is instantiated with "server write" parameters.
- •Each sender manages its own epoch and "truncated" sequence number
 - no synchronization is needed with other senders in the group. Initialized to 0.
- •The sender include its *Sender ID* in the DTLS Record Layer header and increments the "truncated" sequence number when sending a group message.
- •The *epoch* will be increased, and the "trunc." *sequence number* will be reset once the group session key is renewed or updated (*out-of-scope: to be defined as part of key management*)

DTLS record layer processing

Listeners (Receivers)

- •Multiple "read states" are instantiated with "server write" parameters for each sender linked by *SenderID*
 - Keying material same but the epoch and the "truncated" sequence number of the last received packets needs to be kept different for different senders.
- •Listeners use the *multicast destination IP and port address* of the packet to lookup the "server write" key.
- Message is decrypted and the MAC of the message is checked
- •Using the Sender ID field, receivers retrieve the last used epoch and sequence number to detect replayed messages.
 - If success: last seen seq number from the SenderID in the "read state" is updated

Changes since IETF 88

- More discussion on the group level security
 - Security considerations provide additional guidance on the risks of single group key
- Limit number of group members < 100
 - SenderID field reduced from 2-bytes to 1-byte
- Ensure the solution is crypto-agile
 - Not limited to any particular cryptosuite like AERO
 - Supports DTLS cryptosuites used at record layer
- Other comments
 - Use port address for binding

Summary

Group communication requires application security in many scenarios

 Preferably re-use existing security protocols on constrained devices in LLNs.

 Proposal to reuse DTLS Record layer to support secure group communication.