
HPACK Security Observations

Eric Rescorla

Mozilla

ekr@rtfm.com

IETF 89 HPACK Security Overview 1



Threat Model Overview (Abstract)

• Compression function acts as an oracle

• Attacker can query the oracle to see if a given header/value is

present

• Gets one bit in response: was this value seen before?

• What can the attacker do?

– Search the space of a given header

– Only works with low entropy secrets

IETF 89 HPACK Security Overview 2



Is there any way to exploit this in HTTPS?

• Cookies are pretty high entropy?

• But what about passwords?

– Often very low entropy

– Appear in headers with basic auth (how commonly is this

used?)

– Absent CORS JS probably can’t modify this header

– But Flash may be able to

IETF 89 HPACK Security Overview 3



Why is this stronger than just querying the server?

Client Attacker Server

Attack Codeoo

oo TLS Handshake //

Requests with guessed secret// X

• Most servers have mechanisms to prevent fast guessing attacks

– Rate limiting, limited try, etc.

• The attacker allows the client and server to set up an

HTTP2/TLS connection

• The attacker injects queries with their guesses

– But blocks the client’s requests to the server

– So the server never sees the guesses

IETF 89 HPACK Security Overview 4



Some words from Adam Barth

“The situation gets worse if we consider non-standard web technology,

such as Flash. For example, Flash’s URLRequest API lets the attacker

set a wide variety of headers because it uses a header blacklist rather

than a whitelist [2]. Worse, Flash permits the attacker to issue such

requests across origins via the navigateToURL API. It just so happens

that the Authorization header is on Flash’s header blacklist, but we need

to consider the possibility that web sites will store sensitive information

in headers that aren’t on Flash’s blacklist.

One reaction I can imagine to this issue is to blame Flash and decry its

use of a blacklist rather than a whitelist for security, but that misses the

larger point that HPACK weakens security because it requires all

downstream technologies to maintain more invariants in order to avoid

leaking sensitive information out of an otherwise secure channel.”

IETF 89 HPACK Security Overview 5


