Protocol for I2RS

12RS WG
IETF #89 London, UK

Dean Bogdanovic deanb@juniper.net
v0.1

Definitions
Persistent data store — data store on network element where
management system writes configuration data. The persistent

data has to survive reboot process, as well it has to provide
access to historical config changes

Ephemeral data store — data store where management system
writes temporary configuration data. The ephemeral data store
doesn’t survive reboot process, as well doesn’t provide access
to historical config changes. Ephemeral config data isn’t
verified.

Operational state — state of control daemon. It can be changed
by reading persistent or ephemeral config store, control
protocols or through exposed APIs.

Intro

Reviewing RESTCONF and NETCONF capabilities for I2RS

use
YANG is assumed as Data Language for I12RS
Assumptions: I12RS Agent and Clients have access to YANG

DM

I2RS Agent and Client architecture

NETCONFE Management . % Cfgstore
E daemon .
Network admin

daemon

daemon

daemon

Configuration model

Need mechanism to define service templates to be exposed to

the clients via agents
agents{
routing{
routing-services-template;
}
filtering{
filtering-services-template;
}
}

I2RS Agent and Client architecture

NETCONF! Management et Cfg store
E daemon ‘., .
Network admin | — ..)

routing
daemon

routing
agent &

daemon

irewall
daemon

Bl firewall
daemon

Client policy definition

Define policy for clients which agents they can access
clients {

client-Anne{ client-Bill{
authentication local; authentication RADIUS;
ac.cess- { access {
filtering; o
routing: filtering;
analytics; analytics;
})
} }

}

I2RS Agent and Client architecture

NETCONF: Management
; daemon

Network admin .
routing

daemon

routing
Client Anne agent B
RESTCONF

daemon

daemon

Client Bill -

analytics firewall
daemon

Filter model (simple)

~

accept

discard

policer

count

4)
IP protocol
4 filter id)
src port
match_func dest port
action_func
address_family
_ - 4 I
inet_v4

log

/

_ inet_v6 -

Device configuration vs modifying
operational state

* NETCONF and RESTCONF provide mechanism to
configure devices, but not to change operational state

NETCONF

Network Configuration Protocol (RFC 6241)

Operations are realized on top of RPCs

Uses XML for configuration data as well as protocol messages
The NETCONF protocol can be conceptually partitioned into

four layers:

1. The Content layer consists of configuration data and notification data

2. The Operations layer defines a set of base protocol operations to
retrieve and edit the configuration data.

3. The Messages layer provides a mechanism for encoding remote
procedure calls (RPCs) and notifications

4. The Secure Transport layer provides a secure and reliable transport of
messages between a client and a server.

NETCONF cnt’'d

Configuration data Notification
CO ntent <configuration> <services> <ssh> <root-
login>allow</root-login> </ssh> <xnm-clear-text> </ data

xnm-clear-text> <netconf> <ssh> </ssh> </netconf>
</services> </configuration>

{Operations } {<get-conﬁg>, <commit-config> }
{ RPC } { <rpc>, <rpc-reply> } { <notiﬁcation>}

i $ 1

[Transport] [SSH, SSL]

NETCONF

Cons

Can’t modify
operational daemon
state directly

Multiple configuration
data stores

Commit model

RPC based

Pros

|IETF Standards track
configuration protocol
Selective data retrieval
with filtering

Provides data validation
and verification

RESTCONF

IETF draft draft-bierman-netconf-restconf-04
defined as simplified interface to resource-oriented device

abstractions
not intended to provide full capabilities as NETCONF

RESTCONF

Cons

No network locking model
Can’t modify operational
state of network device
Using JSON only simple
meta-data is supported

Pros

Unified data store

Provides atomicity of
transaction

Simplified defaults handling
Allows multiple edits (with
PATCH) within single message
Providing abstracted simplified
config model

Supports XML and JSON
Streaming via Server-Sent-
Events

Edit collision detection

RESTCONF and NETCONF Gaps

* Both protocols will need some new mechanism in order to be

able to install operational state on the device:
* <edit-operational>in NETCONF
or
 PUT/POST/PATCH to the operational resource in RESTCONF

