ForCES Model Gap Analysis for
1I2RS

Jamal Hadi Salim <hadi@mojatatu.com>
IETF 89, London, UK

ForCES Architecture In A Nutshell

R Path
et esource Path gy

GET g
REDIRECT

DELETE
 EVENT UN/SUBCRIBE LFBx XML Model

Definition
(RFC 5812)

SET RESPONSE
GET RESPONSE
REDIRECT |
DELETE RESPONSE
EVENT REPORT

Resource Owner (FE

ForCES Architecture In A Nutshell

* A protocol (The Verbs)

- A modular transport for the protocol
* A data model (The nouns describing resources)

- Logical Functional Block which are constructs that
describe the resource

 Combine the above and you have a language

- [<verb> <noun> [args]]+
* Anti-RPC

- Few verbs but infinite possibilities of nouns

LFB Class Definition

Datatype definition

LFB Class

* Object oriented resource definition
* Each class has definitions for:

- Datatype, components, Capabilities, Events

* Multiple instances of an LFB class can be
created/instantiated.

- Example: Class Rib instance 2

- Each class instance has its own:
» State/config
e capabilities
e events

LFB Datatype Definitions

e Formal constraints for validation of defined
attributes

» Atomic types, complex/compound types,

* grouping of compound types in the form of
structures and indexed/keyed tables

* Hierarchical/tree semantics

» Aliasing to symlink shared infrastructure
* Optionality and default values

e Basic ACL (RW permissions)

LFB Class Definitions

« Components

- data type definitions of control/config/state resource
attributes acted on by a controller via the ForCES protocol

» Capability

- definitions of resource capabilities and capacities
advertised by the resource owner

e Events

- hooks for publish/subscribe with expressive trigger and
report definitions

« count, threshold which could be binary, range, or time which could
be formed into a compound expression using and/or operators

LFB Class Extensibility

* |Inheritance and extension of a parent class
* Inheritance and extension of data definitions

 Backward and forward compatibility of LFB
classes and defined data structures

— Versioning

- Be liberal in what you expect and conservative in
what you do

Example DataTlype

enum rib-type: {

IPV4 RIB_FAMILY
IPV6_RIB_FAMILY
MPLS RIB_FAMILY
IEEE_MAC_RIB_FAMILY

} struct rib: {

RIB_NAME string[16],

rib-family rib-type,

_Routetable array of type route,
boolean ENABLE_IP_RPF_CHECK
}

| union match : {
Match of type matchtype,

_ ipv4-route
“nexthops array of struct nexthop-list, ipv6-route
Optional table of route-attributes mpls-route

- Optional table of route-vendor-attributes Mac-route
8 |

interface-route
}

Example components

component id 1:

- INSTANCE NAME type string[N], read-write
component id 2:

- ROUTER_ID type uint32, read-write
component id 3:

- optional interface-list array of type ifindex, read-write

component id 4.

- rib-list array of type rib, read-write

Example Capabilities

. capability id 27:
- NH_CHAIN DEPTH type uint16

Example Events

Event id 1: monitor Routes table,

- advertise route that changed
Event id 2: monitor Routes table,

— advertise route added
Event id 3: monitor Routes,

- advertise route deleted
Event id 4: monitor Nexthop resolution,

- advertise nexthop + changed status
 (state: resolved/unresolved)

Gaps

* Overhead in table dumps or bulk sets when
tables have "holes”

- Requires use of ILV per table row (64 bit
overhead)

e Could be burdensome if you have small table rows
(less than 64 bits in total size)

- Does not seem to be an issue relative to the RIB
iInformation model

Gaps

* New Data type definitions maybe needed for RIB info
model

- List datatype
 Worrisome is when list elements are not the same size
- “At least one of these”
e Current approach is to tag all but one element as non-optional

* Union base types may require some rethinking

- Needed by some of the RIB information model

- Refer to discussion: http://www.ietf.org/mail-
archive/web/forces/current/msg04668.html

Pros/Cons

* Pros * Cons
- Extremely extensible - Small Changes
and simple required to fully meet
programmatic I2RS spec

Interfaces

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

