Further considerations on data center congestion control

IETF89@London denglingli@chinamobile.com

Outline

- Review on TCP CC in Internet DCs
- Discussion on CC in Operator DCs

Recap on E2E Congestion Control

Internet

- achieve convergence in multiple round trips
- fairness among (legacy) flows
- Data center
 - performance highly sensitive to latency variation
 - differentiation rather than fairsharing
 - explict delay/priority indication from apps

TCP Perf. Issues in DCs (1/3)

- Incast collapse
 - Problem: Perf. drops as # of concurrent substasks increases
 - perf. indicator: # of concurrent working servers allowed w/o perf. loss
 - Triggers: timeout/slow start from repeated losses
 - counter measures:
 - » Req1: reduce # of loss/timeout
 - » Req2: mitigate perf. impact from loss/timeout
 - Roots: shallow-buffer@ToR switches
 large # of synchronized short flows
 - counter measures:
 - » enlarge buffer? no good for other issues.
 - » break traffic synchronization? depending on app, may decrease overall delivery performance by adding extra delay.

TCP Perf. Issues in DCs (2/3)

- Long Tail of RTT
 - Problem: delay-sensitive short flows suffer from long RTTs
 - perf. indicator: variation of flow RTTs
 - Trigger: buffer queuing
 - counter measures:
 - » Req3: control the length of or even eliminate buffer queues
 - Root: existence of greedy long flows
 - counter measures:
 - » Req4: delay prioritizatized buffer queuing

TCP Perf. Issues in DCs (3/3)

- Buffer Pressure
 - Problem: bursty delay-senstive flows suffer from shortage of available buffer space
 - Perf. indicator: length of buffer queues
 - Trigger: loss from buffer bloat
 - counter measures:
 - » Req3: control/avoid lenghty buffer queues
 - » Req5: smooth traffic bursts
 - Roots: existence of greedy long flows burstieness of delay-sensitive flows
 - counter measures:
 - » Req4: delay prioritizatized buffer queuing

TCP Perf. Enhancement in DCs

Since both hardware device and software stacks is usually highly customized by a single DC onwer, there have been various private solutions for these issues, including cross-layer, cross boundary (network+end host) hybrid ones.

Requirement 1 : Reduce unnecessary loss/timeout

Requirement 2: mitigate the performance impact of loss/timeout

Requirement 3: control/avoid lenghty buffer queues

Requirement 4: delay prioritizatized buffe queuing

Requirement 5: smooth traffic bursts

1: trasport: optimized TCP timer

2: transport: optimized TCP CC

3: network: buffer queuing feedback

4: application: priority/delay indication

5: link: loss-free frame delivery, DCE

6: physical: NIC pacing

End host

network

Generalized Cross-layer e2e CC in DCs

There has been work on more accurate ECN feedback for DCs. draft-ietf-tcpm-accecn-reqs-05
Proposal to add latency/priority specification into transport API. draft-deng-taps-datacenter-01

Network Operator's Data Centers

- Internet Service Resource Introduction
 - reduce opex for interworking traffic
 - increase UoE by feeding requests locally
 - multi-tenant resource sharing
- Network Funcation Virtualization (NFV)
 - reduce capex for dedicated hardware/software
 - ensure reliability goals through pooling/migration
 - increase managability by centralized routing control

Example-1: V-IDC

providing VM instead of physical servers

— It seems easy if we map the solution with virtual switch architecure provided by local hypervisor and apply e2e cc via unmodified VMs, but does it?

- latency-bounded traffic types in a V-IDC
 - frond-end production traffic among VMs
 - e.g. small web site hosted as a virtual-dc tenant in operator's IDC
 - issue1: latency drifting with VM timer
 - VM management traffic among physical servers
 - e.g. life-cycle management, migration, etc.
 - issue2: latency specification and cc by hypervisors rather than VM

Example-2: Network Function Virtualization

V-EPC: tunneled traffic across DCs

•Core network infrastructure are virtulized and running on commodity platforms.

• SFC: dynamic tunneled traffic within DCs

- •Flow specific network service functions are decoupled from dedicated network device, as chained VMs on the path of tunneled traffic.
- •DPI/charging/PEP/header enrichement/ NAT/FW/etc.
- Issue3: A NFV DC is only a segment of the e2e data traffic.

Congestion Management in Operator's DCs

- Similarities to SP IDC
 - low-cost general platform servers/switches
 - performance sensitive to internal congestion
- Differences from SP IDC/Internet
 - VM vs physical
 - hypervisor be a potential congestion/mangement point
 - Tunnel vs E2E
 - e2e CC is suspected to be not responsive enough
 - Policying vs fairsharing
 - more intelligence network provision through flexible control

Discussion: What may help?

- Case 1: hypervisor-involved distributed CC
 - specify VM-hypervisor(v-switch) & hypervisor-hypervisor interaction for CC in terms of VM-VM/host-host traffic
- Case 2: segment CC for tunneled e2e traffic
 - enable intermediary congestion feedback/control for tunneling traffic by hypervisor/VM
 - explore its interaction with e2e CC
- Case 3: status exposure for centralized management
 - instead of VM, more accurate/objective congestion feedback can be provided by hypervisors

Open discussion invitation

- Topic
 - the state-of-art solutions for DC CC
 - relevant work/considerations on virtualized DC CC
 - anything you would like to share
- Tentative arrangement
 - Friday 13:00-14:00, room: TBD
- Contact: denglingli@chamobile.com
- Food/Drink provided:-)