IKEv2/IPsec Context Definition

draft-plmrs-ipsecme-ipsec-ikev2-context-definition-00

Daniel Palomares, Orange Labs – LIP6
Daniel Migault, Orange Labs

INTRODUCTION

•Motivation:

- Large clusters may take advantage: fail-over with high availability, load-balancing, scalability of overloaded SGs, etc.
- For security reasons, operators are interested in vendors interoperability for clustering IPsec platforms.

•Current standard:

- RFC6311 adds protocol support for High Availability (counters).
- RFC6027 IPsec Cluster Problem Statement
- •Today, IKEv2/IPsec parameters synchronization is application specific.
- Goal of the document:
 - To list the IKEv2/IPsec parameters and their associated level.
 - This draft does not define format for the parameters/context.

IKEV2 SESSION KEYS

•Case 1:

•The node sends the private Diffie-Hellman key, the peer's KE content and nonces.

•Case 2:

The node sends the SKEYSEED and nonces.

• Case 3:

- The cluster memeber sends all computed keys
- SK_* = SK_d, SK_ai, SK_ar, SK_ei, SK_er, SK_pi, SK_pr).
- SKEYSEED and its derivatives are computed as follows:
 - SKEYSEED = prf(Ni | Nr, g^ir)
 - •{SK_d | SK_ai | SK_ar | SK_ei | SK_er | SK_pi | SK_pr } = prf+ (SKEYSEED, Ni | Nr | SPIi | SPIr)

IKEV2 PARAMETERS DEFINITION

MANDATORY

IKE Version
INITIATOR and RESPONDER flags
Local/Remote host address (IPv4 or IPv6)
INITIATOR's and RESPONDER's IKE_SA SPI
Incoming/Outgoing Message IDs
The cryptographic material for the IKE_SA
[SA]Proposal
enc r/int algos and key length, prf
Extensions and Condition of the IKE_SA
(NAT, EAP, MOBIKE)
IDi/IDr
(ID_IPV4_ADDR, ID_IPV6_ADDR, ID_FQDN, etc.)
Credentials (pre-shared keys or digital certificates)
The Windows bitmap

VENDOR SPECIFIC

n/a

OPTIONAL

IKE lifetime

Vendors ID

IPSEC PARAMETERS DEFINITION

MANDATORY

Local/Remote host addresses (IPv4 or IPv6)
Inbound/Outbound IPsec_SA SPI
IPcomp flag, CPI-CPO, IPcomp algo
SN counters and SN overflow flag
Incoming/Outgoing Message IDs
The anti-replay window value.
IPsec mode: transport or tunnel mode
The SA Lifetime
Path MTU: maximum size of an IPsec packet that can
be transmitted without fragmentation.
Upperspec: upper-layer protocol to be used.
Source IP/Destination IP addresses and ports of the
protected traffic.

ESP - AH encryption/integrity algorithms and key

The crypto material: KEYMAT (encryption and/or

lengths.

authentication keys).

VENDOR SPECIFIC

Instance-id or flow-id: it helps a node to identify which packet processing unit will process this ipsec traffic or which ipsec instance out of multiple ipsec processing units will process this ipsec traffic.

OPTIONAL

n/a

COMMENTS

- Version -01: (comments from the mailing list)
 - Intended status: INFORMATIONAL.
 - Explicitly include some parameters (message IDs, IKE lifetimes, etc.).
 - Should the SG send only computed keys SK_*?
 - Or instead: DH Secret + nonces + keys.
 - Define different levels within the context:
 - Mandatory Optional Vendor Specific

CONCLUSIONS

Comment on

<draft-plmrs-ipsecme-ipsec-ikev2-context-definition>

QUESTIONS

HIGH AVAILABILITY

IETF89-London

9

TRAFFIC MANAGEMENT

