A Framework of MPLS Global Label draft-li-mpls-global-label-framework-01

Zhenbin Li, Quintin Zhao (Huawei) Tianle Yang (China Mobile)

IETF 89, London, United Kingdom

History and Purpose of Presentation

- History
 - Propose drafts before IETF 87.
 - Intense presentation in IETF 88: three drafts in 15 minutes in SRING WG.
- Purpose of Presentation
 - Return to MPLS WG to discuss MPLS global label.
 - Solicit more comments.

Usecases of MPLS Global Label

Identification of Location:

- VPLS Multicast over MP2MP LSP: Be used to represent source PE for learned MAC address.
- Segment-Based EVPN: Be used to represent source Ethernet Segment for C-MACs.
- MPLS OAM for LDP LSP: Be used to represent source PE for LDP LSP.

Identification of Service:

- Aggregating MVPNs over single P-Tunnel: Be used to represent MVPN.
- Local Protection of PE Node: Be used to represent L3VPN/L2VPN.
- Service Chain: Be used to represent service flow.

Identification of Network:

- Segment Routing: Be used to represent network nodes.
- MPLS Network Virtualization: Be used to represent virtual network topology, virtual network nodes and virtual network links.

Thinking on MPLS Global Label

- Usage of MPLS Global Label
 - Cope with traditional challenges with higher efficiency: e.g. C-MAC learning.
 - New application scenarios: segment routing, service chain, etc.
- Choice of Architecture for MPLS Global Label
 - Central Control should be adopted to coordinate label allocation for all nodes.
 - Existing Central Control Point (DR/RR/PCE) can be reused and enhanced.
- Choice of Protocol Extensions for MPLS Global Label based on Different Applications:
 - IGP-based: Be suitable for applications which needs to advertise label binding to all network nodes.
 - BGP-based: Be suitable for applications which needs to advertise label binding to edge network nodes.
 - PCE-based: Be suitable for LSP-specific which needs to advertise label binding to part of network nodes.
 - Inter-domain Applications: BGP-based or PCE-based.

Representation of MPLS Global Label

- Option A: Use the traditional MPLS label range (16 ~ 2^20 -1).
 A shared label segment can be calculated for all nodes to reserve for the usage of MPLS global label.
 - Pros: Keep the same with the mechanism with the existing label mechanism.
 - Cons: There might be confliction between the global label and the existing label range.
- Option B: Expand MPLS label range with label stack mechanisms to resolve the possible confliction between the global and the existing label range.

Control Plane

 MPLS global label should be allocated through a centralized controller to guarantee all nodes can have the same interpretation for a specific global label. It should adopt a central controlled architecture for MPLS global label allocation.

Control plane (Cont.)

- BGP-Based Control Plane:
 - Route Reflector (RR) can act as the role of BGP controller. We call this type of RR as RR+.

- IGP-Based Control Plane
 - Similar mechanism as DR can be used for IGP controller.

- PCE-Based Control Plane
 - The PCE servers can act as the role of the centralized controller and the PCC can act the role of the client for process of MPLS global label.

Updates

- Incorporate using existing MPLS label range for MPLS Global Label in Representation of MPLS Global Label.
- Remove related sections which refer to [I-D.li-mpls-megalabel] since expansion of MPLS label range needs more work.
- Use general term "controller" in the architecture.
- Correct text errors.

Next Steps

- Solicit more comments and feedbacks.
- More global label operations are taken into account: Label Withdraw, Error Process, Inter-domain, etc.
- Revise the draft.