Secure MPTCP

draft-bagnulo-mptcp-secure-00
M. Bagnulo
IETF89

Motivation

e MPTCP (RFC6824 and RFC6824bis) is more
vulnerable than TCP

— Passive eavesdropper during initial handshake can
hijack the MPTCP connection AFTER leaving the
on-path location

— Active attacker can hijack the connection by
subverting a JOIN msg and then can redirect the
connection to an IP addres of its will.

— In regular TCP, the attacker must be on path all the
time during the atttack

Motivation (2)

e draft-ietf-mptcp-attacks concludes that to
address these attacks, the data stream should
be protected (rrather than the MPTCP control
msgs)

— The reason for this is NAT compatibility

e tcpcrypt is one approach to secure the
payload, it is natural to explore the MPTCP/
tcpcrypt integration (hereafter called SMPTCP)

Motivation (3)

* |[n addition MPTCP shares the vulnerabilities of
TCP
— Passive eavesdropping
— Insertion of content in data stream
— DoS attacks (RST spoofing, ack spoofing, dropping
packets)

* tcpcrypt naturally address at least the first two
attacks, so better than TCP security will result

Limitations and issues

e tcpcrypt does not protect against MitM
attacks, so SMPTCP will be vulnerable to MitM

— the attacker must be active and on path attacker
to eavesdrop

— It needs to be active to hijack and needs to block
all subflows between legitimate endpoints

SMPTCP initial handshake

SYN + MP_CAPABLE + CRYPT/Hello

SYN/ACK + MP_EAPABLE + CRYPT/
PKCONE

B

MP_CAPABLE carries A’s key (ka) for
backward compatibility

15 bytes in total

MSS, SACK, WND scale and tiemstamps
option fit

MP_CAPABLE carries B’s Key (kb) for
unigueness (discuss)

PKCONF carries pub-cipher-list (2 alg are
10 B) making total of 22 B in total

Not all the above options would fit.

CRYPT/INIT

Crypto material in payload

3 B of options

MP_CAPABLE not needed as tcpcrypt
keys are used

CRYPT/INIT

Crypto material in payload
3 B of options

Material resulting after handshake
MPTCP tcpcrypt

Encryption keys, one per

* One session key per each

side (Key A and Key B), to each side (kec, kes)

secure HMACs * Authentication keys, one
 One token per each side, to per each side (kas, kac)

identify the connection * A session ID (SID) of 64 bits,
 One IDSN per each side statitically unique

Generating MPTCP values out of tcpcrypt values:

*Key A = kac

*Key B = kas

*Token A = 32msb(hash(ka)) - ka exchanged in MP_CAPABLE
*Token B = 32msb(hash(kb)) - kb exchanged in MP_CAPABLE
*IDSN A = 64lsb(hash(kac+SID))

*IDSN B = 64lsb(hash(kas+SID)

Adding subflows / Adding addresses

* All subflows protected with the same keys
(kac, kas)

* |nstead of using the original keys in MPTCP the

news keys are used for the HMAC protection
of JOIN and ADD-ADDR messages.

Exchanging data

* tycpcrypt adds a MAC option in each TCP
segment

— 160bit long MAC, 22 bytes of option
e MPTCP adds the DSS option

— The DSS option doesnt have to be carried in every
packet, but it can be
* What is a reasonable stratehy?

DSS option

 Maximum length: 28B
— Plus 22B from MAC option > 40B

* Ways to deal with this:

— DSS option includes both DSN to seq# map and data
ack

e DSS option only with Data ack, 12B. 12B + 22B <40B

* DSS option only with DSN to seg# map, 20B
— Still a problem, 20B + 22 B> 40B
— We could remove the 2B checksum when tcpcrypt is used
» After all, there is a 22B MAC!
— We could use 4B data seq numbers
» DSS option with Data ack and 4B DSNs: 8B
» DSS option with DSN to seq # map with 4B DNSs: 12 B

Backward compatibility

Types of nodes Expected behaviour
MPTCP nodes

SMPTCP | MPTCP | tcpcrypt | legacy MPTCP/
tcpcrypt nodes tcperypt
SMPTCP nodes

Legacy nodes SMPTCP SMPTCP MPTCP tcpcrypt TCP ?7?
MPTCP/tcpcrypt
MPTCP MPTCP TCP TCP MPTCP
tcpcerypt tcpcrypt TCP tcpcerypt
legacy TCP TCP
MPTCP/ ?7?

tcpcrypt

Challenges

tcpcrypt uses 22 B of options in every
segment. When used with MPTCP, we use all
option sapce for some segments

— No room left for SACK, and others

— Would it be possible to use less option space?

