Tradeoffs in Network
Complexity

Complexity verses the Problem

- Harder problems tend to require more complex

solutions

- Complexity has no meaning outside the context of the
problem being solved

* Nail verses screw verses screw+glue
- How many balloons fit in a bag?

Complexity verses the Toolset

- More complexity can be managed with better tools
* If your only tool is a hammer...

- But we need to figure in the cost of the tool
* Nail guns are harder to maintain than hammers

* Sonic screwdrivers are notorious for breaking at just the
wrong moment

Complexity verses Skill Set

- Things that are complex for one person might

not be for another...

* This isn’t a (just) matter of intelligence, it’s also a
matter of focus and training

Complexity verses Complexity

- Complexity comes in pairs
* [t is easier to move a problem around (for example, by

moving the problem to a different part of the overall
network architecture) than it is to solve it.

* It is always possible to add another level of indirection.
* RFC1925
- Decreasing complexity in one part of the system

will (almost always) increase complexity in
another

The Complexity Graph

N .
N
N . 7
~ .
N
~ ~ . /
~ ~~ Complexity
~ .
~
S S\WGEt Spot .~ Function
. - . ~
. - / \ .
T et ~ Counter-complexity
— . S
/‘ ~ ~ o -
~ - ~ o -
—

The Point

You can never reach some other desirable

goal without increasing complexity

* Decreasing complexity in one place will (nearly)
always increase it in another

* Decreasing complexity in one place will often
lead to suboptimal behavior in another

* Increasing service levels or solving hard
problems will almost always increase complexity

You don’t have to have a point, to have a point...

The Goal

- Bad questions

- How complex is this?
* Will this scale?

- Good questions
- Where will adding this new thing increase complexity?
* If | reduce complexity here, where will | increase it?

* If | reduce complexity here, where will suboptimal
behavior show up?

- Complexity at the system level is about
tradeoffs, not absolutes

Fast Reroute as an
Example

Precompute

- Router A uses the path through B as its
primary path to 192.0.2.0/24

- There is a path through C, but this path is
blocked by the control plane

- If A forwards traffic towards 192.0.2.0/24 to
C, there is at least some chance that traffic
will be reflected back to A, forming a routing
loop

192.0.2.0/24

- We would like to be able to use C as an
alternate path in the case of a link failure

along A->B->E

Precompute: LFAs

- Loop Free Alternates (LFAs)

* A can compute the cost from C to determine if

traffic forwarded to 192.0.2.0/24 will, in fact, be
looped back to A

* If not, then A can install the path through C as a
backup path

- Gains
* Faster convergence

- Costs

- Additional computation at A (almost nil)
* Designing the network with LFAs in mind

192.0.2.0/24

Precompute: Tunneled LFAs

192.0.2.0/24

-« Tunnel into Q

* A can compute the first hop beyond C where
traffic destined to 192.0.2.0/24 will not loop
back

* A then dynamically builds a tunnel through C
to this point and installs the tunnel interface
as a backup route

* There are a number of ways to do this

* NotVIA, MRT, Remote LFA, etc.

- Different computation and tunneling mechanisms,
but the general theory of operation is the same

Precompute: Tunneled LFAs

- Gains
* Relaxed network design rules (rings are okay)
* Eliminates microloops
* Faster convergence

- Costs

+ Additional computation at A (almost nil)
* Some form of dynamic tunnel
- Additional control plane state

. De_signing the network with alternate paths in
min

* These mechanisms don’t support every possible
topology (but more than LFAs)

* Thinking about alternate traffic patterns to project link
overload, QoS requirements, etc.

192.0.2.0/24

Whither Complexity?

Whither Complexity?

- Will we ever have a single number that tells us how
complex a network is?

* No...
- But we will have a bunch of numbers that help us

characterize specific parts
- Will we ever have something we can point to that
will mathematically prove, “this is complex,” “that
won’t scale,” etc.”?

*No...

* But we can understand what complexity looks like so we
can “see” elegance more clearly

Whither Complexity?

» One useful result would be a more realistic
view of network design and operation

- We're caught on multiple pendulums
* Centralize! Decentralize!
* Layer protocols! Reduce protocol count!

- Most of these swings relate to our absolute
view of complexity
* There must be a better solution!

* Let’s go try that over there! (shiny thing syndrome)

- If we could gain a realistic view of complexity,
we might be able to see how to at least ’
reduce the frequency and amplitude... { ! |

Whither Complexity?

- One useful result would be a more realistic view of
network design and operation

- We're caught on multiple pendulums
* Centralize! Decentralize!
* Layer protocols! Reduce protocol count!

- Most of these swings relate to our absolute view of
complexity
* This is so complex —there must be a better solution!
* Let’s go try that over there! (shiny thing syndrome)

- If we could gain a realistic view of complexity, we might
be able to see how to at least reduce the frequency and
amplitude of these pendulum swings...

One Way Forward

- Measurements within a framework
* Understand the system as a whole
* Think about how to measure each point

* Think about how to compare, or weigh, each pair of
points

- Document the tradeoffs we find in real life

* Helps guide the work of developing measurements

* Helps build a “body of knowledge” that will drive the
state of the art in network design forward

Efforts to Measure & Describe

- Network Complexity Working Group (NCRG)
* IRTF working group

* Trying to find ways to describe and measure
complexity

* Gathering papers in the network complexity space on
networkcomplexity.org

- draft-irtf-ncrg-network-design-complexity-00.txt
* Within NCRG

* Parallel to this presentation

Policy Dispersion
Example

Optimal Forwarding

- Traffic originating at A, B,
and C must pass through
deep packet inspection
before reaching D

- Where should we put this
policy?

?mc

il &
-l &
&

Optimal Forwarding

- At the first hop router?

- We have to manage per edge
node

- | can automate these
configurations, but...

* Now | have to manage a new set
of tools and processes

7mumnmo

g[15e.>
-l €%
Ao

- No matter how | slice this,

dispersing policy closer to the
edge adds complexity

Optimal Forwarding

- At the second hop router?

- Reduces the number of
devices to manage

- But...

* Potentially wastes bandwidth
between the first and second
hop router

fummrmo

il &
-l &
&

* Leaves the first hop routers
without the packet inspection
protection offered at the edge

Optimal Forwarding

- Dispersing policy increases configuration and
management complexity while increasing
optimality

- Centralizing policy decreases complexity while
decreasing optimality

- This will be true for any service or function that

impacts the handling of traffic hop by hop
* Quality of service, traffic shaping, caching, etc.

Service Chaining

| know! I'll just virtualize my services
* Then | can tunnel the traffic service to service
starting from where it enters the network!
- Good try...

* But you can’t fool the demons of complexity
that easily...

2
i\

N >
Y| S (2N 79
N AT, o2 /
T S ol A\ N\ \,, £
Oy— DY A L
& AN\ >ISO))))

Ol

J

/)

-
1 »’//,,/ [
R

Service Chaining

- Create a new virtual service
containing the packet
Inspection process
someplace close to D

- At the network entrance...
* Look up the destination D

* Determine the class of service,
based on the source A

* Tunnel the traffic to the virtual
packet inspection service

Service Chaining

- We've kept the service
logically close to the
network edge, while
physically centralizing it

- You can bring the policy to
your packets, or you can
bring the packets to your
policy

* To paraphrase Yaakov’s rule...

Service Chaining

- We've still added complexity

* The policy about which packets to put in which tunnels to
chain to which services must be programmed in at the
edge devices

- And we’ve still reduced optimality

* Traffic must be tunneled through the network

* Potentially wasting bandwidth for packets that will be dropped at
some future policy point

* Tunnels must be configured and maintained
- Managing quality of service becomes more complex
* The length of the real path of the packets has increased

Aggregation/Stretch

- If B and C do not aggregate

- A will have the optimal route to
reach both 192.0.2.0/26 and
192.0.2.64/26

N

- But... o ;

* A will have more routes in its .

local routing table :

1

- A will receive topology state |

changes for all the links and D .
nodes behind B and C E

- So more routes, more state :

change visibility, more 192.0.2.0/26
complexity 192.0.2.64/26

Aggregation/Stretch

- Assume A aggregates to
192.0.2.0/24

* A will choose either A or B for
everything within this subnet
(ignoring ECMP)

* Hence A will choose a suboptimal
route to either 192.0.2.0/26 or
192.0.2.64/26

gTB

- Reduces complexity
* A has fewer routes in its local
table
* A deals with less state change 192.0.2.0/26

over time

192.0.2.64/26

Aggregation/Stretch

- Aggregation almost always confronts us with the
state verses stretch tradeoff

- More state == more optimal paths

- Less state == |less optimal paths

* Or more stretch — the difference between the optimal
path through the network and the path the traffic
actually takes

Control Plane Centralization

- Let’s centralize the entire control plane!

- Won’t this be simpler?
* Policy will be in one place
* Easier design

* No thinking through aggregation, etc.
* Just install the routes where they need to be in real time

- Can dynamically interact with the control plane in real time
* Applications can tell the control plane when new paths/etc. are needed

- Sounds neat
* But... has anyone read RFC1925 recently?
* It is always possible to agglutinate multiple separate problems
into a single complex interdependent solution. In most cases
this is a bad idea.

Control Plane Centralization

- Complexity Points
* North/South interface
* This isn’t as simple as it sounds

* Particularly as there is a “kitchen sink” tendency in these
things

- Resilience
* The controller is a single point of failure
* This has to be mitigated somehow...
* Fast convergence
* We can always precompute and install alternate paths

* But double failures and rapidly changing local conditions can
stress the system, possibly causing a control plane failure

- Maybe we need a new rule of thumb...

- Distribute where you can, centralize where you
must...

>

v/

v/

The End!

