
1

Structured RLC codes:
an update

Vincent Roca (Inria, France)
Kazuhisa Matsuzono (NICT, Japan) ✠

IETF89, NWCRG meeting
March 6th, 2014, London

(✠part of the work done while visiting Inria as post-doctorate)

Note well

l we, authors, didn’t try to patent any of the
material included in this presentation

l we, authors, are not reasonably aware of patents
on the subject that may be applied for by our
employer

l if you believe some aspects may infringe IPR you
are aware of, then fill in an IPR disclosure and
please, let us know

http://irtf.org/ipr"

2

Our proposal and some results
in block mode… A reminder

For details, see:
http://www.ietf.org/proceedings/88/slides/slides-88-nwcrg-2.pdf

3

Goals (from IETF88)
l design codes that
 can be used indifferently as sliding/elastic/block codes

 can be used with encoding window/block sizes in
1-10,000s symbols range
 keep high enc./decoding speeds and erasure recovery

performance in all cases

 can be used as small-rate codes
 it’s not necessarily required, but it simplifies many things

 focus only on use-cases that need end-to-end coding
 e.g. for FLUTE/ALC, FECFRAME, or Tetrys

 enable compact and robust signaling (essential!)
 vectors can help for tiny k values but it’s unfeasible above
 use a known function + key (e.g. PRNG + seed)

4

Two key ideas
l idea 1: mix binary and non binary coefficients
 most equations are sparse and coefficients binary
 a limited number of columns are dense and use non-

binary coefficients on GF(28)

l idea 2: add a structure
 add a single dense row (e.g. XOR sum of all source

symbols) and make all repair symbols depend on it

5

Let’s put ideas 1 and 2 together
l 3 key parameters

 k block or encoding window size
 D_bin controls the density of the sparse sub-matrices
 D_nonbin controls number of dense non-binary columns

•  {D_nonbin, D_bin} depend on k and a target maximum
average overhead"

l example: in block mode

6

sparse
binary
part	

sparse
binary
part	

0 1 ・・・1 62 1 0 ・・・0 18 1 0	

1
1 1
1 1

　　　　
1　　　　 1
1　　　　 1	

H =	

s0 s1 ………………………. sk-1 r0 r1 ….. rn-k+1	

1 1 1 1 1 1 1 1 1 …….. 1 1 1 	

dense non-binary columns	

1 0 ・・・1 29 0 0 ・・・1 77 0 1	

r0 is the “heavy
repair symbol”	

each repair
“includes r0”	

It works well as a block AL-FEC code
l it works well on average…

 parameters are chosen so that the average overhead is
always below, say 10-3 (meaning k*10-3 add. symbols needed)

l and when looking at decoding failure proba. curves
 no visible error floor at 10-5 failure probability 

7

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 190 200 210 220 230 240 250
 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 1e+06

D
ec

od
in

g
fa

ilu
re

 p
ro

ba
bi

lit
y

N
um

be
r o

f s
am

pl
es

Number of received symbols

Histogram (total of 1000000 iter.)
nsr_RLC(D_nonbin=1/50, D_bin=1/10), CR=1/2 K=200

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 490 500 510 520 530 540 550
 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 1e+06

D
ec

od
in

g
fa

ilu
re

 p
ro

ba
bi

lit
y

N
um

be
r o

f s
am

pl
es

Number of received symbols

Histogram (total of 1000000 iter.)
nsr_RLC(D_nonbin=1/100, D_bin=1/20), CR=1/2 K=500

k=200	
 k=500	

What about sliding window
mode?

8

Structured RLC in sliding window mode
l with a fixed length (k) sliding window

 example: k=4, CR=2/3 ⇒ send one repair after 2 src symbols

9

s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 …	

dense non-binary columns, regularly spaced	

1 1 1 1 	

r0-3	
r1	

1
1 1 1 0 0 1	

r0-5	
r2	

1 1 1 1 1 1 	
1

1 1 1 0 0 29	

compute and send r0-3, r1	

compute and send only r2	

r0-7	
r3	

1 1 1 1 1 1 1 1 	
1

1 1 1 62 0 1	

compute and send only r3	

r0-9	
r4	

1 1 1 1 1 1 1 1 1 1 	
1

1 1 1 0 0 1	

compute and send only r4	

[0-3]	

[1-4]	

[3-6]	

[5-8]	

[2-5]	

[4-7]	

[6-9]	

sparse binary part	

current encoding
window {s1; s2; s3; s4}

Struct. RLC in sliding window mode (cont’)
l about the previous example
 at session start, we wait k symbols to be available, and

then compute and send a few repair symbols to match
the target code rate

 afterwards we mix source and repair symbols in a
periodic way

 each repair that is not a heavy symbol “accumulates” the
current heavy repair symbol
 i.e. the XOR sum from s0 to the highest known symbol
 the current sum repair symbol is sent from time to time

 the Dnonbin/Dbin are set according to the fixed k value and
desired average overhead, using pre-calculated tables

10

A few experiments
l test conditions (small k=20)

 the encoding window (size k = 20) slides over a flow of 25*k
= 500 source symbols

 CR = 2/3, send 1 repair after 2 source symbols
 plot Prfail(plr) post-repair curves for the whole transmission

•  does not catch the number of non recovered source symbols"

11

 0.01

 0.1

 1

 10 15 20 25 30 35 40

D
ec

od
in

g
Fa

ilu
re

 P
ro

ba
bi

lit
y

Packet Loss Ratio (%)

SRLC, CR=2/3 k=20
Binary RLC, CR=2/3 k=20

RLC over GF(2^8), CR=2/3 k=20
 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 10 15 20 25 30

m
in

/a
vg

/m
ax

 S
ou

rc
e

Pa
ck

et
 L

os
s

R
at

io

Packet Loss Ratio (%)

SRLC, CR=2/3 k=20
Binary RLC, CR=2/3 k=20

RLC over GF(2^8), CR=2/3 k=20

•  non-bin coefficients are essential
•  the heavy repair symbol improves performance WRT. RLC over GF(28)	

SRLC	

bin RLC	

non-bin RLC	

A few experiments… (cont’)
l test conditions (medium k=100)

 the encoding window (size k = 100) slides over a flow of 25*k
= 2500 source symbols

 CR = 2/3, send 1 repair after 2 source symbols
 plot Prfail(plr) post-repair curves for the whole transmission

•  does not catch the number of non recovered source symbols"

12

 0.01

 0.1

 1

 10 15 20 25 30 35 40

D
ec

od
in

g
Fa

ilu
re

 P
ro

ba
bi

lit
y

Packet Loss Ratio (%)

SRLC, CR=2/3 k=100
Binary RLC, CR=2/3 k=100

RLC over GF(2^8), CR=2/3 k=100
 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 10 15 20 25 30

m
in

/a
vg

/m
ax

 S
ou

rc
e

Pa
ck

et
 L

os
s

R
at

io

Packet Loss Ratio (%)

SRLC, CR=2/3 k=100
Binary RLC, CR=2/3 k=100

RLC over GF(2^8), CR=2/3 k=100

•  we reused D_bin/D_nonbin values computed for the block mode, which is
perhaps not appropriate here…

SRLC suffers!	

bin RLC	

SRLC	

non-bin RLC	

An improvement (under progress)
l consider the union of encoding windows when

computing new repair symbols…
 will make a difference with small k and high CR values

13

s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 …	

dense non-binary columns, regularly spaced	

1 1 1 1 	

r0-3	
r1	

1
1 1 1 0 0 1	

r0-5	
r2	

1 1 1 1 1 1 	
1
1 1 1 1 0 0 29	

compute and send r0-3, r1	

compute and send only r2	

r0-7	
r3	

1 1 1 1 1 1 1 1 	
1

1 1 0 1 62 0 1	

compute and send only r3	

[0-3]	

[1-4]	

[3-6]	

[2-5]	

[4-7]	

sparse binary part	

union of encoding
windows since
previous repair

computation

[1-5]	

[3-7]	

Conclusions

14

Conclusions
l our proposal tries to take the best of RLC
 fill in the gap between sliding/elastic window codes and

block codes
 use the right technique (bin vs. non-bin coefficients) at

the right time, in the right way
•  find balance between erasure recovery perf. and complexity"

l a lot remains to be done yet…
 how fast is it?

•  e.g., compared to our optimized LDPC-Staircase/RS codecs"
 how does it scale with k?

•  e.g., compared to our optimized LDPC-Staircase codec"
 define signaling aspects

•  itʼs a critical practical topic"
15

Thank you!

16

