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NC terminology and 
architecture 
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Basic idea (as in RMT) 
l assemble BBs and 
   create a NC protocol 
   instantiation 

 protocol = { building 
blocks (specialized if 
needed) + some glue } 

 working solution 

l “building block” (BB) 
approach 

 focused, reusable 
components 
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NC Protocol 
Instantiations 

Building Blocks 
e.g.  
FEC BB 

e.g.  
hdr BB 

NB: at RMT, there is an additional level, on top of PI, namely “application” 
like FLUTE or FCAST that further instantiate a PI to turn it into a practical 
solution 

NB: what I’m calling FEC BB 
might be called Coding BB 



FEC BB and terminology 
l let’s see the FEC (e.g. RLC) BB terminology 
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NC Protocol Instantiation 

FEC BB 

input flow(s) output flow(s) 
mapping to BB’s 
input symbols 
(can be 1⇒1 or 
more complex) 

input 
symbols 

output 
symbols 



FEC BB and terminology… (cont’) 
l let’s look further at the FEC (e.g. RLC) BB 

 example: encoding side 
 elements in the FF can be considered if need be 

5 

Example: basic RLC BB 

input symbols output symbols 

c1 
c2 
c3 

c0 

element in FF(2m) 
(e.g. byte if FF(28)) 

element i is 
c0*symb0[i] + … 

+ c3*symb3[i] 

current encoding 
window 



Architecture (high level view) 
l encoding side (independently of the layer where it’s 

applied) 
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NC encoding 
instance input flow(s) output flow(s) 

•  next NC instance 

(may be used locally, and/or 
forwarded toward the source(s)) 

configuration and mgmt 

•  from the upper layer  
(source flow), or 
•  from previous NC instance 
(encoded flow) 

feedback flow(s) 



Architecture (high level view) 
l decoding side (independently of the layer where it’s 

applied) 
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NC decoding 
instance input flow(s) output flow(s) 

feedback flow(s) 

•  from previous NC instance 
(encoded flow) 

•  toward upper layer 
(source flow), or 

•  next NC instance if 
meaningful 

(may be used locally, and/or 
forwarded toward the source(s)) 

configuration and mgmt 



Additional missing important terminology 
l FEC scheme (fully specified, see RFC 5052) 

 

 
 each scheme is uniquely identified (IANA registry) 

•  FEC Encoding ID !ex. 5 for Reed-Sol. over FF(28) in "
" " " "the context of RMT"

 all the code details are specified non ambiguously 
•  interoperability is a MUST"

 signaling enables encoder/decoder synchronization, for 
a given object transfer 
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FEC Scheme 
= 

{identifier + code specifications + signaling } 



Additional missing imp. terminology (cont’) 
l yes, we need it! 
 for instance 

 FEC Encoding ID 100  refers to binary RLC 
 FEC Encoding ID 101  refers to RLC over GF(24) 
 FEC Encoding ID 102  refers to RLC over GF(28) 
 FEC Encoding ID 103  refers to our proposed SRLC 
 FEC Encoding ID 104  refers to another Structured RLC 
 … 

 NB: ID 100 can also refer to RLC over GF(2m), where m is 
carried in the signaling part… It works too! 

 this FEC Encoding ID points to a specific FEC BB and a 
specific way of doing signaling 
 all NC instances know exactly what to do 
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Examples of NC Building 
Blocks 
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Non exhaustive BB list 
name description 

Finite Field BB specify how FF computation is performed, how elements are 
managed in symbols, etc. 

coefficient list encoding 
BB 

•  can be explicit: full vector, or compressed list (e.g. Run Length 
Encoding) 

•  can be “implicit”: as a tuple {function; value} that gene-rates 
the coefficients (e.g. PRNG + seed + algorithm) 

FEC BB actual FEC solution (may reuse the FF and coefficient list 
encoding BBs) 

header BB Q: is a generic header feasible? 
In any case, it MUST include a generic header extension 
mechanism (e.g. ALC EXT_...) 

congestion control BB especially with NC at transport level, as the main protocol 

security BB(s) If done within the NC instance. 
Q: is it the right approach? Perhaps for some NC-specific security 
services… TBD 
Otherwise we re-use existing security solutions… 
Involves all the basic services (authentication, integrity, non 
repudiation, anti-replay, confidentiality, etc.) 

… … 
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