
1

About Network Coding
terminology and concepts

Vincent Roca (Inria, France)

IETF89, NWCRG meeting
March 6th, 2014, London

Quick & dirty draft for discussion purposes!

NC terminology and
architecture

2

Basic idea (as in RMT)
l assemble BBs and
 create a NC protocol
 instantiation

 protocol = { building
blocks (specialized if
needed) + some glue }

 working solution

l “building block” (BB)
approach

 focused, reusable
components

3

NC Protocol
Instantiations

Building Blocks
e.g.
FEC BB

e.g.
hdr BB

NB: at RMT, there is an additional level, on top of PI, namely “application”
like FLUTE or FCAST that further instantiate a PI to turn it into a practical
solution

NB: what I’m calling FEC BB
might be called Coding BB

FEC BB and terminology
l let’s see the FEC (e.g. RLC) BB terminology

4

NC Protocol Instantiation

FEC BB

input flow(s) output flow(s)
mapping to BB’s
input symbols
(can be 1⇒1 or
more complex)

input
symbols

output
symbols

FEC BB and terminology… (cont’)
l let’s look further at the FEC (e.g. RLC) BB

 example: encoding side
 elements in the FF can be considered if need be

5

Example: basic RLC BB

input symbols output symbols

c1
c2
c3

c0

element in FF(2m)
(e.g. byte if FF(28))

element i is
c0*symb0[i] + …

+ c3*symb3[i]

current encoding
window

Architecture (high level view)
l encoding side (independently of the layer where it’s

applied)

6

NC encoding
instance input flow(s) output flow(s)

•  next NC instance

(may be used locally, and/or
forwarded toward the source(s))

configuration and mgmt

•  from the upper layer
(source flow), or
•  from previous NC instance
(encoded flow)

feedback flow(s)

Architecture (high level view)
l decoding side (independently of the layer where it’s

applied)

7

NC decoding
instance input flow(s) output flow(s)

feedback flow(s)

•  from previous NC instance
(encoded flow)

•  toward upper layer
(source flow), or

•  next NC instance if
meaningful

(may be used locally, and/or
forwarded toward the source(s))

configuration and mgmt

Additional missing important terminology
l FEC scheme (fully specified, see RFC 5052)

 each scheme is uniquely identified (IANA registry)

•  FEC Encoding ID !ex. 5 for Reed-Sol. over FF(28) in "
" " " "the context of RMT"

 all the code details are specified non ambiguously
•  interoperability is a MUST"

 signaling enables encoder/decoder synchronization, for
a given object transfer

8

FEC Scheme
=

{identifier + code specifications + signaling }

Additional missing imp. terminology (cont’)
l yes, we need it!
 for instance

 FEC Encoding ID 100 refers to binary RLC
 FEC Encoding ID 101 refers to RLC over GF(24)
 FEC Encoding ID 102 refers to RLC over GF(28)
 FEC Encoding ID 103 refers to our proposed SRLC
 FEC Encoding ID 104 refers to another Structured RLC
 …

 NB: ID 100 can also refer to RLC over GF(2m), where m is
carried in the signaling part… It works too!

 this FEC Encoding ID points to a specific FEC BB and a
specific way of doing signaling
 all NC instances know exactly what to do

9

Examples of NC Building
Blocks

10

Non exhaustive BB list
name description

Finite Field BB specify how FF computation is performed, how elements are
managed in symbols, etc.

coefficient list encoding
BB

•  can be explicit: full vector, or compressed list (e.g. Run Length
Encoding)

•  can be “implicit”: as a tuple {function; value} that gene-rates
the coefficients (e.g. PRNG + seed + algorithm)

FEC BB actual FEC solution (may reuse the FF and coefficient list
encoding BBs)

header BB Q: is a generic header feasible?
In any case, it MUST include a generic header extension
mechanism (e.g. ALC EXT_...)

congestion control BB especially with NC at transport level, as the main protocol

security BB(s) If done within the NC instance.
Q: is it the right approach? Perhaps for some NC-specific security
services… TBD
Otherwise we re-use existing security solutions…
Involves all the basic services (authentication, integrity, non
repudiation, anti-replay, confidentiality, etc.)

… …
11

