
Opportunities and Research Challenges of
Hybrid Software Defined Networks

Stefano Vissicchio Laurent Vanbever Olivier Bonaventure
Universite catholique de Louvain Princeton University Universite catholique de Louvain

This article is an editorial note submitted to CCR. It has NOT been peer reviewed.
The authors take full responsibility for this article’s technical content. Comments can be posted through CCR Online.

ABSTRACT
Software Defined Networking (SDN) promises to ease de-
sign, operation and management of communication networks.
However, SDN comes with its own set of challenges, includ-
ing incremental deployability, robustness, and scalability.
Those challenges make a full SDN deployment unlikely in
the short-term and possibly inconvenient in the longer-term.

In this paper, we explore hybrid SDN models that combine
SDN with a more traditional networking approach based on
distributed protocols. We show a number of use cases in
which hybrid models can mitigate the respective limitations
of traditional and SDN approaches, providing incentives to
(partially) transition to SDN. Further, we expose the quali-
tatively diverse tradeoffs that are naturally achieved in hy-
brid models, making them convenient for different transition
strategies and long-term network designs. For those reasons,
we argue that hybrid SDN architectures deserve more atten-
tion from the scientific community.

1. INTRODUCTION
Judging from the increasing attention of both industry

and academia to Software Defined Networking (SDN), com-
munication networks seem on the verge of a paradigm shift.
For years, networks have been relying on devices that are re-
alized (and locked) by vendors, and can be only configured
by operators. SDN defines a new architecture in which a cus-
tom software SDN controller exerts a logically-centralized
control of the whole network. This new architecture promises
to simplify network management, spur innovation, and make
networks more powerful and flexible [1].

SDN comes with its own set of challenges and limitations,
ranging from (business, economic and technical) deployment
obstacles to concerns on logic centralization guarantees, e.g.,
in terms of resilience, robustness and scalability. Those fac-
tors are currently contributing to limit SDN deployments to
a very small number of cases in which SDN is adopted in
specific subnetworks (see, e.g., [2]). In the future, they can
also make a full SDN adoption inconvenient in many cases.

In this paper, we show that combining SDN and tradi-
tional architectures in hybrid SDN models has the potential
to sum their benefits while mitigating their respective chal-
lenges. Indeed, protocols and techniques developed in the
traditional networking approach can provide working solu-
tions for some technical difficulties of SDN. For example, a
per-device control-plane naturally helps to i) quickly react
to failures, e.g., by relying on local decisions; ii) update the
control-plane, e.g., performing per-device changes after hav-
ing diverted the traffic from the currently updated device;

and iii) improve scalability, e.g., by spreading control-plane
decisions on multiple devices.

In the following, we review the traditional and SDN ar-
chitectures, and we identify main inertial factors for SDN
deployment (§2). Those inertial factors highlight the practi-
cal need for supporting retro-compatibility and SDN incre-
mental deployment, as also testified by the recent creation
of industrial working groups on hybrid SDN devices (see,
e.g., [3]). Then, we describe different hybrid SDN models
(§3). For each model, (i) we define the interaction between
the SDN controller and the distributed control-plane built
by non-SDN devices, (ii) we identify related works, and (iii)
we discuss use cases for both short-term (e.g., transition
to SDN) and long-term (e.g., network design) goals. We
also provide a qualitative comparison of the analyzed mod-
els with respect to several dimensions, including expressive-
ness, robustness, scalability and management complexity
(§4). Our comparison sheds light on the variety of tradeoffs
that are natively achieved by the different hybrid models.
As such, each model looks especially suitable for a specific
transition strategy and given architectural needs of a certain
class of network operators. Our use cases and tradeoff anal-
ysis further suggest that hybrid SDN models can represent
a valid complement or even an alternative to recent SDN
research efforts, including extension of SDN protocols with
more and more features (e.g., OpenFlow v1.3 [4]) and imple-
mentation of SDN controllers as distributed systems (e.g.,
for resiliency [5] or for partial decentralization of control-
plane decisions [6]). Finally, we discuss basic research chal-
lenges and open problems in hybrid SDN networks (§5).

2. SDN: INCENTIVES AND INERTIA
A communication network can be seen a system with few

architectural elements, assembled together to provide net-
work services, like best-effort packet delivery, access control,
tunnelling or data encryption. The basic elements of a net-
work are nodes (e.g., switches, routers, load-balancers), and
interconnections (both physical links and protocol-dependent
logical adjacencies) between nodes. Nodes interact on two
logically different planes. On the data-plane, nodes forward
data packets (possibly after modification) to their respec-
tive next-hops, relying on a data structure called Forward-
ing Information Base (FIB). Higher-level decisions on edge-
to-edge paths and traffic flow forwarding are taken at the
control-plane level, which is typically realized in software.
The control-plane controls the data-plane by updating the
FIB of each node.

For years, most networks have been designed, deployed



CN SDN
required
nodes

COTS with local
control-plane

(possibly virtual)
hardware with FIB

interface to
node FIBs

node control-plane
configuration

programmatic FIB
interface

control-plane
computation

distributed on each
node

logically-centralized
controllers

control-plane
software

proprietary, closed custom, open

Table 1: Main differences between CN and SDN paradigms.

and managed as COTS-based systems. A COTS (Com-
mercial Off-The-Shelf) is a product realized, supplied and
evolved by a vendor while being used without modification
by its acquirer. The acquirer is then responsible for the
integration of possibly heterogeneous proprietary COTSes.
In the traditional network architecture, nodes are COTSes
whose hardware realizes a local data-plane while proprietary
software implements a portion of the network control-plane.
Although their implementation cannot be modified, the be-
havior of COTS nodes can be influenced by operators by
tweaking node configurations. Each node configuration de-
fines the network protocols activated on that node. More-
over, it specifies protocol parameters to fine-tune informa-
tion exchanges and criteria according to which nodes mod-
ify and forward data packets. Despite the huge amount of
research work in network management, node configurations
are still long text files written in obscure vendor-specific lan-
guages. Further, supported protocols and parameters that
can be configured on commercial nodes are decided by ven-
dors. In the following, we refer to this network design and
management model as COTS Networking (CN).

Recently, SDN (Software Defined Networking) has been
proposed as an alternative to CN [1]. The main differences
between CN and SDN are summarized in Table 1. Primarily,
SDN is predicated around the separation between control-
plane and data-plane. In SDN, network nodes implement
only the data-plane, while a separated architectural element,
called SDN controller, realizes the control-plane. The SDN
controller is a logically-centralized custom software, possibly
corresponding to a distributed system (see, e.g., [5, 6]). The
independence between the controller and the nodes simpli-
fies the development of a high-level management interface,
e.g., based on declarative languages (see, e.g., [7]). More-
over, while nodes need to be complete products in CN, SDN
can rely on simpler hardware that exposes a programmatic
interface to the FIB (e.g., OpenFlow switches [4]) or even on
virtual devices (e.g., virtual switches running on servers [8]).
In the following, we distinguish between CN and SDN nodes,
depending on their ability to support SDN. In particular, we
consider a switch as an SDN node if it supports SDN pro-
tocols (e.g., OpenFlow [4]), and as a CN node otherwise.
Moreover, given their intrinsic architectural differences, we
refer to SDN and CN as paradigms.

By centralizing and customizing the control-plane, SDN
promises to ease network design and management. However,
discussions with operators highlighted major concerns for a
wide adoption of SDN. They encompass both the transition
from CN to SDN, and the SDN paradigm itself.

Regarding the transition, SDN deployment in existing net-
works poses economical, organizational and technical chal-

lenges. First, SDN has non-negligible initial deployment
costs, in terms of equipment renovation and lack of exper-
tise. To amortize huge investments, operators are generally
reluctant to dismiss expensive CN nodes just to enable a
full SDN deployment. Moreover, since SDN requires a radi-
cal change in their mental model, operators will need train-
ing to design, update, debug and operate SDN networks, or
will need to be flanked by a new generation of network pro-
grammers. Second, production-level SDN controllers still
seem hard to realize. Despite recent efforts to provide high-
level network programming languages (e.g., [7]) and power-
ful abstractions (e.g., [9]), provably effective methodologies
and tools to build a reliable SDN controller enforcing com-
plex network policies are still not available. Hence, opera-
tors may feel puzzled on how to implement (or interconnect
third-party) SDN controllers that will likely need to guar-
antee strict objectives, like security policy enforcement, ex-
tremely high availability and the lowest possible delay (at
least for critical traffic), for any possible set of input pack-
ets. Those problems threaten to make the SDN transition
very long, and to hamper full SDN deployments.

About the SDN paradigm itself, while mitigating the risk
of local inconsistencies between nodes, logic centralization
exacerbates architectural concerns, like reliability, robust-
ness and scalability. Some examples follow. To ensure reli-
ability, fast and expensive out-of-band wide area networks
between SDN controllers and nodes will be needed in large
networks, e.g., to have updated information on failures or on
new incoming flows. This would double network design and
management. Indeed, current out-of-band networks are typ-
ically simple local area networks with loose requirements, as
they are used for non-critical tasks (e.g., periodical SNMP
trap gathering) and in the few cases of major in-band con-
nection disruptions. Logic centralization can also compli-
cate control-plane management tasks like its own upgrade,
e.g., to deploy a new network application or to install a new
version of the controller software. During such an upgrade,
no SDN control-plane is available, e.g., for failure recovery
or new flow processing, likely leading to wide network un-
availability [10]. Finally, scalability concerns apply to both
hardware and software of SDN controllers, especially in large
or highly-dynamic networks where controllers have to take
quick decisions for all the network nodes upon a huge variety
(and possibly frequency) of events, including failures, traffic
demand changes, and new incoming flows.

3. HYBRID SDN MODELS
In this section, we define hybrid SDN models, and we

describe use cases to which each of them naturally applies.
The proposed models differ in the role respectively assigned
to CN and SDN. In particular, we classify hybrid models on
the basis of which paradigm provides which network service,
by controlling FIB entries on which nodes.

Fig. 1 collects examples of the different hybrid SDN mod-
els. In the figure, blue icons, segments and rectangles repre-
sent nodes, physical links, and node FIBs, respectively. The
horizontal and vertical filling patterns identify the portions
of the FIBs respectively controlled by CN and SDN. For in-
stance, a horizontally filled rectangle indicates that CN is
responsible for all the entries in that FIB. The individual
examples in the figure are described in more details in the
following subsections.



(a) Topology-based. (b) Service-based. (c) Class-based. (d) Integrated.

Figure 1: Examples of hybrid SDN models.

3.1 Topology-Based Hybrid SDN
The topology-based hybrid SDN (TB hSDN) model re-

lies on a topological separation of the nodes controlled by
each paradigm. More precisely, the network is partitioned
in zones, so that each node belongs to only one zone. A
zone is a set of interconnected nodes controlled by the same
paradigm. We refer to any zone in which nodes are con-
trolled by SDN (resp., CN) as SDN zone (resp., CN zone).
In SDN (resp., CN) zones, all the services are provided by
SDN (resp., CN). A composition of the services realized by
CN and SDN in different zones is then needed to imple-
ment cross-zone services, e.g., forwarding between any pair
of source and destination in the network.

An example of TB hSDN is depicted in Fig. 1a. The figure
represents a network divided in three zones, namely, two
SDN zones (i.e., the yellow clouds) and one CN zone (i.e.,
the gray cloud). The example matches a case in which SDN
is adopted in specific subnetworks, e.g., only in the backbone
in order to maximize bandwidth utilization as in [2, 11]. A
pair of general use cases for TB hSDN follow.

Transition use case. TB hSDN naturally fits a transition
strategy in which SDN is introduced on a per-region basis,
e.g., initially limiting SDN to specific countries and pro-
gressively extending its deployment to others. During this
process, the portion of traffic managed by the SDN zones
can be progressively increased in parallel to i) maturity of
the technology ii) SDN node deployment, and iii) acquisi-
tion of expertise from operators. In particular, experimental
deployments in which a controller (or one of its modules)
manages non-critical traffic are easily accommodated. For
instance, the example in Fig. 1a can represent an interme-
diate step during the SDN transition in which data centers
are controlled by SDN, while the backbone is managed by
CN for reliability and compliance with operator expertise.

Long-term design use case. Many networks, especially
in enterprises, are already divided in several routing do-
mains [12]. Reasons vary from business (e.g., merger and
acquisitions) and organizational (e.g., Network Operation
Centers with different expertise) to technical (e.g., possibil-
ity to leverage specific features of different protocols in sub-
networks with different requirements) ones. By confining
SDN and CN in disjoint network portions, the TB hSDN
model generalizes this design. Moreover, this architecture
eases the introduction of mechanisms to exchange informa-
tion between SDN zones and between SDN and CN zones,
and their replacement with new ones. For example, inter-
connection mechanisms safer (e.g., [13]) and more flexible
(e.g., [14]) than current ones (i.e., route redistribution and
BGP) can be implemented by relying on custom SDN con-
trollers that propagate information between different zones.

3.2 Service-Based Hybrid SDN
In the service-based hybrid SDN (SB hSDN) model, CN

and SDN provide different services. To implement some ser-
vices, like network-wide forwarding, the two paradigms can
span an overlapping set of nodes, controlling a different por-
tion of the FIB of each node. Nevertheless, some nodes can
be exclusively controlled by a single paradigm, e.g., to real-
ize services like load-balancing or edge-to-edge tunneling.

An example of SB hSDN network is reported in Fig. 1b.
In this example, SDN fills most FIB entries of nodes at the
border of the network, while CN has an exclusive control
of the entire FIB of internal nodes. As such, network-wide
services like forwarding are delegated to CN, while edge-to-
edge services like traffic engineering and access policies [8]
or those requiring full traffic visibility like monitoring [15]
are assigned to SDN. More generic use cases follow.

Transition use case. During a progressive transition to
SDN, only some SDN nodes will generally be available. While
they may not be used to implement the full set of services,
SDN nodes can be strategically placed so that they can pro-
vide or improve a subset of services. Hence, SB hSDN en-
ables a service-based transition, in which the SDN controller
realizes more and more services at each step, by handling an
increasing fraction of nodes (or node FIBs). For instance,
few SDN nodes can be initially deployed to improve load
balancing and overcome rigidities of CN protocols (e.g., sim-
plifying local violations of shortest path routing) as stud-
ied in [16, 17]. By improving traffic engineering and easing
declarative reaction to demand changes, this initial SDN
deployment can be an incentive for operators to start the
transition. The role assigned to the SDN controller can be
progressively extended when other SDN nodes will be added.

Long-term design use case. SDN promises to support
new network services, like Network Function Virtualization.
However, operators may be willing to keep proved CN pro-
tocols and technologies for some services, like MPLS Vir-
tual Private Networks (VPNs) and IPSec encrypted connec-
tions, instead of relying on new software to be integrated
in their SDN controllers. In this case, the division of ser-
vices may represent a long-term design choice, in which the
SDN paradigm is used for services that CN solutions cannot
satisfactorily provide.

3.3 Class-Based Hybrid SDN
The class-based hybrid SDN (CB hSDN) model is cen-

tered around the partition of traffic in classes, and the divi-
sion of those classes into CN-controlled and SDN-controlled.
Contrary to TB hSDN, CN and SDN typically span all the
network nodes in this model, controlling a disjoint set of
FIB entries on each node. Moreover, in contrast with the
SB hSDN, each paradigm realizes all the network services



for the traffic classes assigned to it.
An example of CB hSDN is illustrated in Fig. 1c, where

SDN (resp., CN) fills the FIB entries on each node to control
a small (resp., big) portion of traffic. The SDN-controlled
classes can be defined in terms of TCP flows (e.g., to imple-
ment fine-grained load-balancing for flows attracting most
traffic), applications (e.g., to guarantee low delay on inter-
active applications), business cases (e.g., to provide VPN
services while avoiding limitations of MPLS RSVP-TE [2]),
or a composition of them. More general use cases follow.

Transition use case. A traffic-based transition strategy
consists in installing an SDN controller and progressively
delegating the handling of more traffic to it. This strategy is
especially effective if many nodes are SDN-enabled (e.g., as
if commercial switches or routers will support OpenFlow).
Further, it is helpful for both testing controllers on non-
critical traffic classes and limiting scalability problems at the
beginning of the transition. Throughout such a transition,
deployed CN protocols can work as a backup, e.g., in case of
failure or unexpected behavior of the SDN controller. Also,
depending on the number and position of SDN nodes, SDN-
specific features (e.g., added flexibility via easy match of any
packet field) can be leveraged on SDN-controlled classes.

Long-term design use case. The CB hSDN model may be
adopted as a long-term design, especially if SDN protocols
will be supported by CN nodes, e.g., through a software
upgrade. In this design, operators can naturally leverage
the typical disproportion between the number and the im-
portance of traffic classes. For example, few flows typically
attract most of the traffic (see, e.g., [18]). Those highly-
attractive flows can be grouped in SDN-controlled classes,
in order for the SDN controller to flexibly configure load
balancing and dynamically change forwarding paths with-
out the need for CN configuration tweaking. Alternatively,
SDN-controlled classes can gather traffic for which security
(e.g., access policies) or premium (e.g., optimal routing) ser-
vices have to be offered. In the latter case, the SDN con-
troller can reserve some forwarding paths, apply arbitrary
traffic engineering or assign higher priority to traffic in pre-
mium classes, while CN protocols can deliver best-effort ser-
vices for the remaining packets. Note that the assignment of
classes to SDN can be decided by the operator in a declara-
tive way, e.g., by specifying values of packet fields (e.g., all
traffic towards TCP port 80) or a threshold for the amount
of traffic corresponding to SDN-controlled classes.

3.4 Integrated Hybrid SDN
In all the previous hybrid models, CN and SDN comple-

ment each other by controlling disjoint parts of node FIBs.
The Integrated hybrid SDN (or Integrated hSDN) breaks
this symmetry. In this model, SDN is responsible for all the
network services, and uses CN protocols as an interface to
node FIBs. For example, it can control forwarding paths by
injecting carefully-selected routes into a routing system or
adjusting protocol settings (e.g., IGP weights). In practice,
the FIB of any node is maintained by the CN paradigm,
which is in turn controlled by an SDN controller.

An example of Integrated hSDN is in Fig. 1d. The figure
actually depicts a general architecture that can be realized
in different ways, ranging from BGP-based [19] or MPLS-
based [20] controllers to systems leveraging unified interfaces
to the routing system [21, 22]. The example also highlights
that SDN nodes are unnecessary in this model, making In-

tegrated hSDN suitable for the following use cases.
Transition use case. The independence of the Integrated

hSDN model from the presence of SDN nodes makes it fit-
ting a control-plane based transition strategy. This strategy
includes two macro-steps. In the first step, only the control-
plane is moved from CN to SDN, generally reducing the costs
and the disruption risks of the initial SDN deployment. In-
deed, equipment addition or replacement are unnecessary
at this step, hence operators can acquire confidence in SDN
while relying on traditional well-known protocols. In the sec-
ond step, the data-plane is (progressively) changed, adding
SDN nodes and updating the SDN controller in parallel to
the SDN deployment.

Long-term design use case. From an SDN controller per-
spective, a CN protocol represents an interface to the node
FIBs, in this model. Such an interface is more complex than
current SDN proposals (e.g., OpenFlow) but it also provides
different primitives. On one hand, Integrated hSDN con-
trollers will need to manage protocol-specific aspects (e.g.,
message format) and mechanisms (e.g., convergence algo-
rithms). On the other hand, they can be offloaded from
complex tasks, like the computation of temporary forward-
ing paths to ensure connectivity in case of failures, that can
be directly managed by the CN configuration. The latter
feature can be the main driver for the adoption of Integrated
hSDN as a long-term architecture.

4. TRADEOFF ANALYSIS
We now provide a more in-depth comparative analysis of

the presented hybrid SDN models. We consider the follow-
ing dimensions: i) expressiveness and management simplic-
ity, in terms of easiness of non IP-based forwarding and
enforcement of middlebox policies; ii) robustness and scal-
ability, as architectural concerns; iii) deployment costs, in
terms of hardware upgrade costs, custom software to be pro-
duced, and needed expertise; iv) flexibility and internal com-
plexity, especially as related to the coexistence of multiple
paradigms. This set of dimensions does not pretend to be
complete. Rather, it is intended to show that diverse trade-
offs can be achieved by hybrid models on practically relevant
networking aspects. Such a tradeoff diversity makes hybrid
SDN networks potentially suitable for more use cases than
those described in the previous section. We expect that a
similar analysis can be useful for network operators to clar-
ify which architecture (CN, SDN, or which hybrid one) can
better fit her specific needs.

The results of our analysis are summarized in Table 2. In
the table, comparison dimensions and network architectures
are respectively disposed on rows and columns. Rows are
divided in three groups, corresponding to the hardest chal-
lenges to deal with in CN (first group), SDN (second group),
and hybrid SDN (third group) models.

General hybridization benefits: With respect to CN
networks, hybrid models enable flexibility (e.g., easy match
on any packet field for middleboxing) and SDN-specific fea-
tures (e.g., declarative management interface). At the same
time, they partially inherit robustness, scalability, techno-
logical maturity and low deployment costs from the CN
paradigm. For instance, in TB hSDN, the full expressive-
ness and high manageability of SDN can be leveraged in the
SDN zones, while re-routing tasks and improved scalability
can be delegated to distributed protocols in CN zones. Sim-
ilarly, in CB hSDNs, SDN features are available for critical



CN TB hSDN SB hSDN CB hSDN Integrated SDN

non IP-based
forwarding

hard, complex
configuration

programmable
in SDN zones

programmable
for SDN services

programmable
for SDN traffic

very hard (e.g.,
BGP FlowSpec)

programmable

traffic steering,
middleboxing

hard (e.g., box
replication)

programmable
in SDN zones

programmable
for SDN services

programmable
for SDN traffic

programmable
by the controller

programmable

scalability and
robustness

by CN protocols by CN protocols
in CN zones

by CN protocols
for CN services

by CN protocols
for CN traffic

possibly, by CN
protocols

SDN controller
concern

required custom
software

none controllers of
SDN zones

controllers for
SDN services

controllers for
SDN flows

SDN controller SDN controller

upgrade costs
(hw, sw, expert)

none partial, progres-
sive renovation

partial, progres-
sive renovation

partial, progres-
sive renovation

none global
renovation

paradigm
interaction

none control-plane
collaboration

data-plane
visibility

control-plane
coordination

control-plane
integration

none

Table 2: Tradeoff comparison.

traffic classes only, but the controller can ignore the im-
pact of events (e.g., failures) on the rest of the traffic. In
SB hSDN, the SDN controller can implement only the ser-
vices that would require complex CN configurations. This
would reduce the number of events that SDN has to han-
dle, which in turn would improve scalability of the controller
and reduce hardware requirements, e.g., on the out-of-band
network connecting controller and nodes. More in general,
hybrid SDN enables simplification of both CN configuration
and SDN software, and adoption of each paradigm to tackle
challenges for which it is intrinsically more suitable.

Integrated hSDN represents an exception with respect to
the other hybrid models, mainly because of the asymmet-
ric roles assigned to CN and SDN. Since only CN protocols
are used to access node FIBs, SDN-specific features (like
programmatic and direct access to node FIBs) cannot be
included in the Integrated model. However, for cases in
which destination-based forwarding is sufficient to provide
all the network services, Integrated hSDN has some advan-
tages with respect to the other hybrid models, including
centralized declaration and computation of all network ser-
vice and absence of equipment upgrade costs.

Tunable tradeoffs: Architectural tradeoffs of each model
can be fine-tuned according to some parameters.

Among them, the number and the topological position
of the deployed SDN nodes play a crucial role. On one
hand, the deployment of SDN nodes influences the possibil-
ity to realize SDN-specific features (e.g., direct declarative
FIB control) for given traffic. For example, arbitrary SDN-
decided tags can be added to packets only if the correspond-
ing forwarding path traverses appropriately-configured SDN
nodes. On the other hand, deploying SDN nodes has a cost,
e.g., in terms of hardware addition (or software upgrades if
SDN protocols will be supported by commercial CN nodes),
topology modification and know-how acquisition.

Another important parameter for fine-grained tradeoffs is
represented by the fraction of traffic controlled by SDN. In-
deed, a higher amount of SDN-controlled traffic corresponds
to the possibility of leveraging SDN-specific features (e.g.,
declarative interface) more widely, but it also increases ar-
chitectural challenges (e.g., scalability) for the SDN con-
troller. For example, larger SDN zones in TB hSDN and
more SDN-controlled classes in CB hSDN translate to more
network events to be managed by the SDN controller.

Again, Integrated hSDN is an exception, since the expres-
sivity of the model does not depend on deployed SDN nodes

and all the traffic is SDN-controlled, by model definition.
Hybridization drawbacks: While combining CN and

SDN enables new fine-tunable tradeoffs, hybrid models have
their own peculiar drawbacks. Among them, the need for
managing heterogeneous paradigms and ensuring profitable
interaction between them is particularly relevant, since it
affects the realizability of network-wide services. The im-
pact of such heterogeneity actually depends on the model.
It is rather low in CB hSDN, where the paradigm inter-
action is restricted to coordination for specific operations,
like moving traffic flows from a CN-controlled class to an
SDN-controlled one, or vice versa. The interaction remains
quite loose in SB hSDN, where each paradigm may need
no more than visibility on the FIB entries configured by
the other paradigm (e.g., to prevent conflicting data-plane
decisions). Control-plane coordination is also needed if an
SDN-controlled service has to become CN-controlled, and
vice versa. In contrast, TB hSDN and Integrated hSDN re-
quire stronger forms of paradigm interaction. In TB hSDN,
control-plane collaboration is needed to realize cross-zone
services, e.g., network-wide forwarding with no loops. In the
Integrated hSDN, the two paradigms are tightly coupled by
definition of the model, as SDN relies on CN protocols to
program node FIBs. This asks for control-plane integration.

Combination of hybrid models: A wider range of
tradeoffs can be obtained by combining hybrid models to-
gether. For example, an operator may adopt a TB hSDN
model that splits the whole network in a CN zone (e.g.,
that supports legacy nodes), a SB hSDN zone (e.g., to pro-
vide premium services to some customers), and a pure SDN
zone (e.g., in its data centers). Similarly, the combination
of hybrid models can lead to more articulated transition
strategies. For instance, an operator might nest a service-
based transition into an Integrated hSDN global strategy. In
this case, an SDN controller realizing an Integrated hSDN
model would be installed in a first macro-step. A second
macro-step would consist in deploy the SDN data-plane by
progressively assigning new services to the SDN controller
in parallel to the deployment of new SDN nodes.

5. RESEARCH CHALLENGES
Our tradeoff analysis suggests that the combination of

centralized and distributed paradigms can provide mutual
benefits. Future work is needed to devise techniques and
interaction mechanisms that maximize such benefits while
limiting the added complexity of the paradigm coexistence.



We now discuss some open research challenges.
First, we envision that services hardly implementable with

a single paradigm can be realized by conveniently combining
CN and SDN. The identification, characterization and im-
plementation (e.g., via cross-paradigm techniques) of those
services need to be studied.

Second, a (partial) control-plane redesign would be needed
to allow effective cooperation between architectural elements
of different paradigms, like an SDN controller and a CN
control-plane. To this end, both current network theory and
control-plane protocols likely need to be extended, e.g., to
take into account the simultaneous and collaborative pres-
ence of centralized and decentralized routing systems, and
multiple forms of access control (e.g., commercial firewall
rules and OpenFlow switch entries).

Third, the added complexity of having multiple paradigms
can hamper the development of SDN abstractions in hy-
brid networks. Two examples are represented by safe net-
work updates and declarative networking. In the first case,
safe update techniques tailored to either CN (e.g., [23]) or
SDN (e.g., [9]) networks will have to be extended, or new
techniques to be proposed. Indeed, while complicating the
problem, the presence of paradigm interaction mechanisms
may not prevent provably-safe update procedures to be de-
vised [24]. In the second case, a system integrating SDN pro-
gramming languages with CN management primitives into
a unified declarative interface is missing. Such an integrated
management system will probably have to include a hetero-
geneity adaptation layer, e.g., to match a desired output to
the actual capabilities of deployed CN and SDN nodes.

The challenges pointed out so far apply to all the hybrid
models. Nevertheless, other challenges depend on the spe-
cific (combination of) hybrid models. Few examples follow.
In the TB hSDN model, the most critical problem is proba-
bly the design of a safe control-plane interaction mechanism
that allows to maximize the flexibility of SDN in SDN zones
while preserving network-wide correctness properties (e.g.,
absence of forwarding loops). The design of such a paradigm
interaction mechanism is likely to be challenging, as testi-
fied by CN protocol interconnection primitives (e.g., [13]).
Cross-service and cross-paradigm techniques will need to be
defined in the SB hSDN model, so that FIB entries can be
optimized for all the services rather than on a per-service
basis. In the CB hSDN model, algorithms and mechanisms
to transfer traffic class control from one paradigm to another
are still missing. Moreover, the SDN controller needs to in-
teract with possible CN nodes present in the network, e.g.,
by relying on configuration protocols (e.g., [21]) or on com-
mercial device SDKs (e.g., [25]). Finally, the practicality of
the Integrated hSDN model depends on the possibility to
characterize primitives and functions that each traditional
protocol (e.g., in typical and safe configurations) can offer
to an SDN controller.

More generally, the increasing relevance and frequency
of partial deployment problems (e.g., SDN and IPv6 roll-
out) suggests the need for a still missing theory for mixed
paradigm deployments in networking. While tailored to
SDN partial deployment, our hybrid models seem a good
starting point in this direction.

6. REFERENCES
[1] N. McKeown et al., “Openflow: Enabling innovation

in campus networks,” SIGCOMM Comput. Commun.

Rev., vol. 38, no. 2, pp. 69–74, Mar. 2008.

[2] S. Jain et al., “B4: experience with a globally-deployed
software defined wan,” in SIGCOMM, 2013.

[3] Open Networking Foundation, “Outcomes of the
Hybrid Working Group,” 2013.

[4] ——, “ONF Web site,”
https://www.opennetworking.org.

[5] T. Koponen et al., “Onix: A distributed control
platform for large-scale production networks,” in
OSDI, 2010.

[6] A. Ferguson et al., “Hierarchical policies for software
defined networks,” in HotSDN, 2012.

[7] N. Foster et al., “Frenetic: a network programming
language,” SIGPLAN Not., vol. 46, no. 9, pp.
279–291, Sep. 2011.

[8] VMware Inc., “VMware NSX The Platform For
Network Virtualization,” Datasheet, 2013.

[9] M. Reitblatt et al., “Abstractions for network
update,” in SIGCOMM, 2012.

[10] L. Vanbever et al., “Hotswap: correct and efficient
controller upgrades for software-defined networks,” in
HotSDN, 2013.

[11] C.-Y. Hong et al., “Achieving high utilization with
software-driven wan,” in SIGCOMM, 2013.

[12] F. Le et al., “Shedding light on the glue logic of the
internet routing architecture,” in SIGCOMM, 2008.

[13] ——, “Theory and new primitives for safely
connecting routing protocol instances,” in SIGCOMM,
2010.

[14] Y. Wang et al., “Neighbor-specific bgp: more flexible
routing policies while improving global stability,” in
SIGMETRICS, 2009.

[15] Big Switch Networks, “Open SDN for Network
Visibility,” solution guide, 2013.

[16] D. Levin et al., “Panopticon: Reaping the Benefits of
Partial SDN Deployment in Enterprise Networks,” TU
Berlin / T-Labs, Tech. Rep., 2013.

[17] S. Agarwal et al., “Traffic engineering in software
defined networks,” in INFOCOM, 2013.

[18] N. Sarrar et al., “Leveraging zipf’s law for traffic
offloading,” SIGCOMM Comput. Commun. Rev.,
vol. 42, no. 1, pp. 16–22, 2012.

[19] M. Caesar et al., “Design and implementation of a
routing control platform,” in NSDI, 2005.

[20] W. Henderickx et al., “Federated SDN-based
Controllers for NVO3,” Internet Draft, 2013.

[21] R. Enns et al., “Network Configuration Protocol
(NETCONF),” RFC 4741, 2011.

[22] A. Atlas et al., “Interface to the routing system
framework,” Internet Draft, 2013.

[23] L. Vanbever et al., “Lossless Migrations of Link-State
IGPs,” IEEE/ACM Trans. on Netw., vol. 20, no. 6,
pp. 1842–1855, 2012.

[24] S. Vissicchio et al., “Safe Routing Reconfigurations
with Route Redistribution,” in INFOCOM, 2014.

[25] J. Kelly et al., “Rapid Service Creation Using the
JUNOS SDK,” in PRESTO, 2009.


