Towards
Transport-Agnostic
Middleware

Martin Sustrik
sustrik@250bpm.com
www.250bpm.com



Messaging Middleware
A layer In the network stack
to manage communication
between more than two endpoints.



Application Layer

Presentation Layer

Messaging Middleware Layer

Transport Layer

Network Layer

Datalink Layer

Physical Layer




ZeroMQ/nanomsg
1 minute overview



As a layer in the network stack
it iImplements multiple protocols,
a.k.a. “messaging patterns”.

 Request/Reply

* Publish/Subscribe
* Pipeline

e Survey

e EtC.



Publish/Subscribe
Distributing data to all interested endpoints

FUB

SUB SUB

SUB SUB SUB




Request/Reply
Load-balancing tasks among stateless workers

REF REF REP

REF request reply REQ

REQ REQ REQ




What about the transport layer?



It's heterogenous!

VWARN

TCP

SUB SUB




Code example

int main()

{
int s = nn_socket (AF_SP, NN_PUB);

nn_bind (s, “tcp://eth0:5555");

F’l]l)'if;f]fir' nn_bind (s, “pgm://eth0;241.0.0.1:5555");

while (1) {
nn_send (s, “ABC”, 3, 0);
sleep (1);

int main()
int s = nn_socket (AF_SP, NN_SUB);

nn_connect (s, “tcp://myserver:5555");

Subscriber |
while (1) {
char buf [100];
nn_recv (s, buf, sizeof (buf), 0);



Why should this group care?



Because it's hard for the application
developer to make informed decision
about transport protocol to use:

 Reliable or unreliable?

e Unicast of multicast?

 Ordered or unordered?

* Pushback or no pushback?

* Widely used (TCP, UDP) or niche (SCTP)?
e EtcC.



Often, informed decision can't even be
made at the development time:

* Developer has little understanding of
customer's deployment environment...

* Application Is sold to different customers,
each having different network...

* Environment Is going to change in the
future...



Yet, by choosing a “messaging pattern”,
developer provides enough information
to make an informed decision about
transport protocols to use!



Example

Publish/Subcribe pattern requires transport layer not to be reliable.
Reliability would mean that a single slow or dead subscriber can
stop the entire distribution tree.

TN
suB SuB T ‘\

sSUB =UB EX

Preferred transport protocol is UDP or DCCP.




Different example

Request/Reply pattern requires transport layer to exercise
pushback. That way the tasks can be redirected from
overloaded workers to underutilised workers.

REF request %

pushback

REQ REQ REQ

Preferred transport protocol is TCP or SCTP.



What are the implications?



Back to the heterogenous example:

VAN

TCP

SUB sUB




No need to specify the transport protocol:

int main()

{
int s = nn_socket (AF_SP, NN_PUB);
nn_bind (s, “eth®:NYSE-stock-quotes”);
Publisher while (1) {
nn_send (s, “ABC”, 3, 0);
sleep (1);
}
}
int main()
{

Subscriber

int s = nn_socket (AF_SP, NN_SUB);
nn_connect (s, “myserver:NYSE-stock-quotes”);
while (1) {

char buf [100];
nn_recv (s, buf, sizeof (buf), 0);



What we get is clean
mechanism vs. policy
separation!



Developer specifies the mechanism:
*NYSE stock quote feed Is to use
the Publish/Subscribe pattern.”

int main()

{
int s = nn_socket (AF_SP, NN_PUB);

nn_bind (s, “ethO@:NYSE-stock-quotes”);
while (1) {
nn_send (s, “ABC”, 3, 0);

sleep (1);

¥
}

Mechanism Is specified via
transport-agnostic API.



Administrator specifies the policy:;
*NYSE stock quote feed Is to use
PGM on the LAN and TCP over the WAN.”

NYSE-stock-quotes:
LAN: pgm
WAN: tcp

Policy Is specified via transport-aware
network configuration tools.



Questions?

Email: sustrik@250bpm.com



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

