
tcpcrypt: the case for
transport-level encryption

Andrea Bittau, Dan Boneh, Mike Hamburg,
Mark Handley, David Mazières, Quinn Slack

Stanford, UCL

Outline

• Why the transport layer?

• Protocol overview

• Design choices

• Possible synergies

Today

Not drawn to scale

IPsec SSH

TCP traffic

TLS

Unencrypted

Goal: protect most traffic

Not drawn to scale

IPsec SSH

TCP traffic

TLS

Unencrypted

tcpcrypt

Step 1:
Maximize use of TLS

• Established solution for protecting communications.

• Depends on developers and administrators:

• Requires changes to applications.

• Requires changes to protocols.

• Requires configuration (certificates).

• Can’t get to 99%

Step 2:
Reach remaining TCP traffic
• Need drop-in replacement for TCP:

• No changes to applications.

• No changes to application-level protocols.

• No configuration.

• Support for incremental adoption.

• Compatibility with NATs.

Security requirements
• Forward secrecy regardless of configuration.

• Always protect against passive eavesdropping.

• Pervasive monitoring by active attack must be
detectable.

• Play well with application-level security.

• Allow applications to prevent active attacks.

• Be hard for application writers to misuse.

• Make it easy to avoid double encryption.

Forward secrecy
• Definition: previously recorded

communications cannot be decrypted by
compromising one or both endpoints.

• Requirements:

• No null or weak cipher options.

• Randomness at both endpoints.

• Short lived public keys.

• How to achieve for most TCP traffic?

Why the TCP layer?
• Ideally positioned to benefit applications that don’t

use TLS (and IPSec, SSH).

• Drop-in solution for unmodified applications.

• NAT friendly.

• Natural granularity for authentication.

• Conceptually encryption is as fundamental as error
detection, reliability and congestion control.

• Precedent for transport-layer crypto in TCP-AO.

tcpcrypt

• New TCP option for opportunistic
encryption.

• Zero configuration, no changes to
applications, simple, good performance.

• Allow end-point authentication.

• Detect pervasive active attacks.

• Possibility of integration with MPTCP,
TCP Fast Open, DANE, ...

The authentication problem

Client Server
But who?

Encrypted

Client Encrypted Man in the
middle

bank.comEncrypted

Session ID
• New getsockopt returns a connection’s Session ID.

• Returns error for non-tcpcrypt flows.

• Unique over all time with overwhelming
probability.

• Even if one end of connection is malicious.

• If equal on both ends, no man-in-the-middle.

• Without authentication, tcpcrypt secure against
passive eavesdropping only.

Detecting pervasive
monitoring

• Suppose tcpcrypt is widely deployed.

• Say 50% of unencrypted HTTP under active attack.

• Downgrade attacks easy to detect:

• Session ID getsockopt returns error.

• What about man-in-the-middle?

• Idea: instrument 100 http clients and servers to
detect attacks.

Session ID (SID)

instrumented
wget

Session ID (SID)

instrumented
lighttpd

SID

Detecting pervasive
monitoring

Session IDs are generic

• Enables experiments that detect
widespread man-in-the-middle.

• Easy to integrate with application-level
authentication. E.g., DANE, password, ...

• Can be repurposed to name connections in
related technologies: MPTCP, TCP Fast
Open.

Integrating with application-
level authentication

Transport layer
Privacy & Integrity

Application layer
Authentication MD5(HA1:nonce:HA2)

Transport layer
Privacy & Integrity

Application layer
Authentication MD5(HA1:SID:HA2)

Session ID (SID)

Integrating with application-
level authentication

Outline

• Why the transport layer?

• Protocol overview

• Design choices

• Possible synergies

tcpcrypt handshake
SYN

CRYPT<HELLO> option

SYN ACK

CRYPT<PKCONF>: public key ciphers, key sizes

ACKCRYPT<INIT1>: symmetric ciphers, MACs, nonce, public key

ACK

CRYPT<INIT2>: key material [RSA encrypted server+client nonce]

 [DH: dh-output, server nonce]

INIT1/2 don’t fit in SYN / ACK: sent as data invisible to apps.

Session cached handshake

Master key

Encryption and
MAC keys Session ID

Session cached handshake

Master key

Encryption and
MAC keys Session ID

Next connection Next key

Session cached handshake

Master key

Encryption and
MAC keys Session ID

Next connection Next key

SYN
CRYPT<NEXTK1>

SYN ACK

CRYPT<NEXTK2>

ACK
 MAC

Low latency!

Backwards
compatibility

• Fallback to TCP if:

• One end point does not support tcpcrypt.

• Middlebox strips CRYPT option.

• Different CRYPT suboptions signal application-
level awareness of tcpcrypt out of band.

• Specified using tcpcrypt mode socket option.

• E.g., can be used to avoid double encryption.

tcpcrypt modes
1. Disabled.

2. Enabled.

3. Application aware.

• Signals application support via getsockopt on peer.

• May be useful for DANE or future protocols.

4. Application mandatory.

• Like 3, but disables tcpcrypt if peer in mode 1 or 2.

Authenticated encryption
(Encryption + MAC)

src port dst port

seq no

ack no

d. off. flags window checksum urg ptr

options (e.g., SACK) MAC option

data

(64-bit seq)

(64-bit ack)

TCP length

Authenticated

Encrypted &
Authenticated

Authenticated encryption
requirements

• Ciphertext for a particular byte position must
never change, even if re-encryption occurs after
coalescing and retransmission.

• Authentication must occur only on fields not
modified by middleboxes.

• Updating the authentication tag must be cheap
when only ACK numbers change.

• Compute two MACs: one for the ACK number,
and one for the rest. XOR the two.

Outline

• Why the transport layer?

• Protocol overview

• Design choices

• Possible synergies

INIT1/INIT2 in data

• Problem: can’t fit key exchange into TCP
option space (40 bytes).

• Encode INIT1 and INIT2 options in TCP
payload invisible to applications, starting on
third leg of handshake.

• This never again happens throughout
connection. Only at the very start.

MAC as TCP option

• Con: incompatible with TSO, middleboxes
that coalesce packets.

• Alternative: MAC in data.

• Would require retransmitting pure ACKs.

• Can’t check MAC of packets that arrive
out of order.

Outline

• Why the transport layer?

• Protocol overview

• Design choices

• Possible synergies

Use with DANE

• DANE stores server certificate in DNS (uses
DNSSEC).

• Can be used for server authentication: sign
session ID with DANE certificate.

• Requires application changes,

• But out-of-band application-aware signal can
maintain backwards compatibility.

Other possible synergies

• Multipath TCP: need to ensure that multiple
connections belong to same user.

• Integrates well with tcpcrypt’s session caching.

• Fast open TCP: need to ensure that future
connections come from past users.

• In both cases: need proof that endpoints
previously spoke. tcpcrypt can provide that.

Open Issues

• TCP Segmentation Offloading (TSO)

• Size of MAC option (e.g., 10 bytes).
Especially when used with Multipath TCP.

• Reduce protocol complexity: rekey?

• Middleboxes: firewalls drop non-HTTP
traffic on port 80?

Conclusion

• Large scale interception poses threat to all traffic.

• Tackle problem from both ends:

• Increase TLS adoption wherever possible.

• Slip tcpcrypt under applications that don’t adapt.

• Can detect/prevent active attacks using Session ID.

• Out-of-band application-aware signaling may allow
backwards compatible use of Session ID in future.

http://tcpcrypt.org

http://tcpcrypt.org
http://tcpcrypt.org

Backup

• Applications often mess up:

• E.g., poor random seeds, failing to check
replay, writing session keys to swap, sign
message with insufficient context, ...

Implementation benefit:
transport layer often in kernel

• Fewer implementations, easier to get right.

• Memory protection against application bugs.

• Keys never leave kernel.

• Tighter integration with sources of entropy.

• Prevents developers from tweaking internals.

tcpcrypt makes security
pitfalls less likely

• Because application programmers do not modify
the transport layer:

• Applications can’t disable forward secrecy.

• Applications can’t use inadequate entropy.

• Applications can’t leak session keys.

• By putting Session IDs into authentication:

• No need to check for replay.

• Signed messages cannot be taken out of context.

Use IPSec everywhere?

• Drop-in solution for unmodified
applications.

• Hard to configure.

• Hard to make work with NAT.

• Hard to tie in with application-level
authentication.

• Less widely used than TLS.

Multipath TCP integration
• Connection setup:

• MP_CAPABLE transfers keys to generate connection
tokens. Use tcpcrypt as a security algorithm and use
Session ID as token.

• Adding flows:

• MP_JOIN uses token to signal connection ID. Use
tcpcrypt’s Session ID and REKEY key stream.

• Steady-state:

• DSS option up to 28 bytes. MAC option 11 bytes. 1 byte
to spare! 32-bit seq nos make DSS 20 bytes, and DSS
checksum not necessary with MAC (freeing 2 bytes).

TCP fast open integration

• Connection setup:

• Server sends fast open cookie to client. Use
tcpcrypt Session ID instead.

• Reconnect:

• Client includes cookie in SYN, along with data.
Use tcpcrypt Session ID as fast open cookie,
and include MAC for data.

