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Step 1: 
Maximize use of TLS

• Established solution for protecting communications.

• Depends on developers and administrators:

• Requires changes to applications.

• Requires changes to protocols.

• Requires configuration (certificates).

• Can’t get to 99%



Step 2: 
Reach remaining TCP traffic
• Need drop-in replacement for TCP:

• No changes to applications.

• No changes to application-level protocols.

• No configuration.

• Support for incremental adoption.

• Compatibility with NATs.



Security requirements
• Forward secrecy regardless of configuration.

• Always protect against passive eavesdropping.

• Pervasive monitoring by active attack must be 
detectable.

• Play well with application-level security.

• Allow applications to prevent active attacks.

• Be hard for application writers to misuse.

• Make it easy to avoid double encryption.



Forward secrecy
• Definition: previously recorded 

communications cannot be decrypted by 
compromising one or both endpoints.

• Requirements:

• No null or weak cipher options.

• Randomness at both endpoints.

• Short lived public keys.

• How to achieve for most TCP traffic?



Why the TCP layer?
• Ideally positioned to benefit applications that don’t 

use TLS (and IPSec, SSH).

• Drop-in solution for unmodified applications.

• NAT friendly.

• Natural granularity for authentication.

• Conceptually encryption is as fundamental as error 
detection, reliability and congestion control.

• Precedent for transport-layer crypto in TCP-AO.



tcpcrypt

• New TCP option for opportunistic 
encryption.

• Zero configuration, no changes to 
applications, simple, good performance.

• Allow end-point authentication.

• Detect pervasive active attacks.

• Possibility of integration with MPTCP, 
TCP Fast Open, DANE, ...



The authentication problem
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Session ID
• New getsockopt returns a connection’s Session ID.

• Returns error for non-tcpcrypt flows.

• Unique over all time with overwhelming 
probability.

• Even if one end of connection is malicious.

• If equal on both ends, no man-in-the-middle.

• Without authentication, tcpcrypt secure against 
passive eavesdropping only.



Detecting pervasive 
monitoring

• Suppose tcpcrypt is widely deployed.

• Say 50% of unencrypted HTTP under active attack.

• Downgrade attacks easy to detect:

• Session ID getsockopt returns error.

• What about man-in-the-middle?

• Idea: instrument 100 http clients and servers to 
detect attacks.



Session ID (SID)
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Session IDs are generic

• Enables experiments that detect 
widespread man-in-the-middle.

• Easy to integrate with application-level 
authentication. E.g., DANE, password, ...

• Can be repurposed to name connections in 
related technologies: MPTCP, TCP Fast 
Open.



Integrating with application-
level authentication 

Transport layer
Privacy & Integrity

Application layer
Authentication MD5(HA1:nonce:HA2)



Transport layer
Privacy & Integrity

Application layer
Authentication MD5(HA1:SID:HA2)

Session ID (SID)

Integrating with application-
level authentication 
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tcpcrypt handshake
SYN

CRYPT<HELLO> option

SYN ACK

CRYPT<PKCONF>: public key ciphers, key sizes

ACKCRYPT<INIT1>: symmetric ciphers, MACs, nonce, public key

ACK

CRYPT<INIT2>: key material [RSA encrypted server+client nonce]

                        
         [DH: dh-output, server nonce]

INIT1/2 don’t fit in SYN / ACK: sent as data invisible to apps.



Session cached handshake

Master key

Encryption and
MAC keys Session ID



Session cached handshake

Master key

Encryption and
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Next connection Next key



Session cached handshake

Master key

Encryption and
MAC keys Session ID

Next connection Next key

SYN
CRYPT<NEXTK1>

SYN ACK

CRYPT<NEXTK2>

ACK
 MAC

Low latency!



Backwards 
compatibility

• Fallback to TCP if:

• One end point does not support tcpcrypt.

• Middlebox strips CRYPT option.

• Different CRYPT suboptions signal application-
level awareness of tcpcrypt out of band.

• Specified using tcpcrypt mode socket option.

• E.g., can be used to avoid double encryption.



tcpcrypt modes
1. Disabled.

2. Enabled.

3. Application aware.

• Signals application support via getsockopt on peer.

• May be useful for DANE or future protocols.

4. Application mandatory.

• Like 3, but disables tcpcrypt if peer in mode 1 or 2.



Authenticated encryption
(Encryption + MAC)

src port dst port

seq no

ack no

d. off. flags window checksum urg ptr

options (e.g., SACK) MAC option

data

(64-bit seq)

(64-bit ack)

TCP length

Authenticated

Encrypted &
Authenticated



Authenticated encryption 
requirements

• Ciphertext for a particular byte position must 
never change, even if re-encryption occurs after 
coalescing and retransmission.

• Authentication must occur only on fields not 
modified by middleboxes.

• Updating the authentication tag must be cheap 
when only ACK numbers change.

• Compute two MACs: one for the ACK number, 
and one for the rest.  XOR the two. 
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INIT1/INIT2 in data

• Problem: can’t fit key exchange into TCP 
option space (40 bytes).

• Encode INIT1 and INIT2 options in TCP 
payload invisible to applications, starting on 
third leg of handshake.

• This never again happens throughout 
connection.  Only at the very start.



MAC as TCP option

• Con: incompatible with TSO, middleboxes 
that coalesce packets.

• Alternative: MAC in data.

• Would require retransmitting pure ACKs.

• Can’t check MAC of packets that arrive 
out of order.
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Use with DANE

• DANE stores server certificate in DNS (uses 
DNSSEC).

• Can be used for server authentication: sign 
session ID with DANE certificate.

• Requires application changes,

• But out-of-band application-aware signal can 
maintain backwards compatibility.



Other possible synergies

• Multipath TCP: need to ensure that multiple 
connections belong to same user.

• Integrates well with tcpcrypt’s session caching.

• Fast open TCP:  need to ensure that future 
connections come from past users.

• In both cases: need proof that endpoints 
previously spoke.  tcpcrypt can provide that.



Open Issues

• TCP Segmentation Offloading (TSO)

• Size of MAC option (e.g., 10 bytes).  
Especially when used with Multipath TCP.

• Reduce protocol complexity: rekey?

• Middleboxes: firewalls drop non-HTTP 
traffic on port 80?



Conclusion

• Large scale interception poses threat to all traffic.

• Tackle problem from both ends:

• Increase TLS adoption wherever possible.

• Slip tcpcrypt under applications that don’t adapt.

• Can detect/prevent active attacks using Session ID.

• Out-of-band application-aware signaling may allow 
backwards compatible use of Session ID in future.

http://tcpcrypt.org

http://tcpcrypt.org
http://tcpcrypt.org


Backup

• Applications often mess up:

• E.g., poor random seeds, failing to check 
replay, writing session keys to swap, sign 
message with insufficient context, ...



Implementation benefit: 
transport layer often in kernel

• Fewer implementations, easier to get right.

• Memory protection against application bugs.

• Keys never leave kernel.

• Tighter integration with sources of entropy.

• Prevents developers from tweaking internals.



tcpcrypt makes security 
pitfalls less likely

• Because application programmers do not modify 
the transport layer:

• Applications can’t disable forward secrecy.

• Applications can’t use inadequate entropy.

• Applications can’t leak session keys.

• By putting Session IDs into authentication:

• No need to check for replay.

• Signed messages cannot be taken out of context.



Use IPSec everywhere?

• Drop-in solution for unmodified 
applications.

• Hard to configure.

• Hard to make work with NAT.

• Hard to tie in with application-level 
authentication.

• Less widely used than TLS.



Multipath TCP integration
• Connection setup:

• MP_CAPABLE transfers keys to generate connection 
tokens.  Use tcpcrypt as a security algorithm and use 
Session ID as token.

• Adding flows:

• MP_JOIN uses token to signal connection ID.  Use 
tcpcrypt’s Session ID and REKEY key stream.

• Steady-state:

• DSS option up to 28 bytes.  MAC option 11 bytes.  1 byte 
to spare!  32-bit seq nos make DSS 20 bytes, and DSS 
checksum not necessary with MAC (freeing 2 bytes).



TCP fast open integration

• Connection setup:

• Server sends fast open cookie to client. Use 
tcpcrypt Session ID instead.

• Reconnect:

• Client includes cookie in SYN, along with data.  
Use tcpcrypt Session ID as fast open cookie, 
and include MAC for data.


